Potential of lignin and cellulose as renewable materials for the synthesis of flame-retardant aerogel composites

被引:2
|
作者
Dungani, Rudi [1 ]
Hua, Lee Seng [2 ]
Chen, Lum Wei [3 ]
Nurani, Wasti [4 ]
Solihat, Nissa Nurfajrin [4 ]
Maulani, Rijanti Rahaju [1 ]
Dewi, Mustika [1 ]
Aditiawati, Pingkan [1 ]
Fitria [5 ]
Antov, Petar [6 ]
Yadav, Krishna Kumar [7 ,8 ]
Mishra, Richa [9 ]
Fatriasari, Widya [4 ]
机构
[1] Inst Teknol Bandung, Sch Life Sci & Technol, Jalan Ganesha 10, Bandung 40132, Indonesia
[2] Univ Teknol MARA UiTM Cawangan Pahang, Fac Appl Sci, Dept Wood Ind, Kampus Jengka, Bandar Tun Razak 26400, Pahang, Malaysia
[3] Univ Malaysia Kelantan, Fac Bioengn & Technol, Dept Bio & Nat Resource Technol, Jeli 17600, Kelantan, Malaysia
[4] Natl Res & Innovat Agcy BRIN, Res Ctr Biomass & Bioprod, JI Raya Bogor KM 46, Cibinong 16911, Indonesia
[5] Washington State Univ, Bioprod Sci & Engn Lab, Richland, WA 99354 USA
[6] Univ Forestry, Fac Forest Ind, Sofia 1797, Bulgaria
[7] Parul Univ, Parul Inst Appl Sci, Dept Environm Sci, Vadodara 391760, Gujarat, India
[8] Al Ayen Univ, Sci Res Ctr, Environm & Atmospher Sci Res Grp, Nasiriyah 64001, Thi Qar, Iraq
[9] Parul Univ, Parul Inst Engn & Technol PIET, Dept Comp Engn, Ta Waghodia, Vadodara 391760, Gujarat, India
来源
关键词
Flame-retardant aerogel composite; Lignin-based aerogel; Cellulose-based aerogel; Lignin-based flame retardant; FRAC; SILICA AEROGEL; THERMAL-CONDUCTIVITY; ORGANIC AEROGELS; CARBON AEROGELS; FABRICATION; FILMS; NANOCELLULOSE; RESORCINOL; FOAMS; WASTE;
D O I
10.1016/j.mtcomm.2024.110501
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Aerogels are ultraporous solid materials characterized by numerous distinctive characteristics, such as an ultrahigh specific surface area, ultralow bulk density, ultralow modulus, extremely low thermal conductivity, extremely low sonic velocity or sound speed, extremely low refractive index, and extremely low dielectric constant. Due to these tunable properties, aerogels are regarded as versatile functional materials that have the potential to be used in various industries as flame retardants, including in oil and gas, building and construction, transportation, and electronics. At present, the dominant component used to synthesize flame-retardant aerogels is silica, the abundance and extraction of which are unsustainable. On the other hand, lignocellulosic biomass is the most plentiful renewable resource on the planet (making it comparable to the abundance of silica), can be obtained at low cost (i.e., derived from agricultural and forestry residue), and can be used to create aerogel frameworks. In addition, lignin can serve as a relatively nontoxic fire-retardant agent. The aim of this research work was to describe the present and anticipated market landscape of flame-retardant aerogel composites (FRACs), summarize the recent progress in the development of lignin- and cellulose-based FRAC systems, and identify the existing challenges to their wider industrial manufacturing and application.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Phosphorylated Cellulose Nanofibrils: A Renewable Nanomaterial for the Preparation of Intrinsically Flame-Retardant Materials
    Ghanadpour, Maryam
    Carosio, Federico
    Larsson, Per Tomas
    Wagberg, Lars
    BIOMACROMOLECULES, 2015, 16 (10) : 3399 - 3410
  • [2] Flame-Retardant Modification of Cellulose Materials by N- and P-Containing Composites
    B. R. Tausarova
    S. O. Abilkasova
    Fibre Chemistry, 2017, 49 : 242 - 245
  • [3] Flame-Retardant Modification of Cellulose Materials by N- and P-Containing Composites
    Tausarova, B. R.
    Abilkasova, S. O.
    FIBRE CHEMISTRY, 2017, 49 (04) : 242 - 245
  • [4] FLAME-RETARDANT CELLULOSE FIBERS
    GOTSCHY, F
    KRASSIG, H
    CZERMAK, M
    TEICHMANN, H
    PAPIER, 1976, 30 (12): : 524 - 532
  • [5] Editorial: Flame-Retardant Polymeric Materials and Polymer Composites
    Shi, Yongqian
    Yu, Bin
    Wang, Xin
    Yuen, Anthony Chun Yin
    FRONTIERS IN MATERIALS, 2021, 8 (08):
  • [6] Green synthesis of polymer nanofibers and their composites as flame-retardant materials for polymer nanocomposites
    Attia, Nour F.
    POLYMERS FOR ADVANCED TECHNOLOGIES, 2016, 27 (08) : 1091 - 1097
  • [7] Hydrogel and aerogel-based flame-retardant polymeric materials: A review
    Vahabi, Henri
    Gholami, Fatemeh
    Tomas, Martin
    Movahedifar, Elnaz
    Yazdi, Mohsen Khodadadi
    Saeb, Mohammad Reza
    JOURNAL OF VINYL & ADDITIVE TECHNOLOGY, 2024, 30 (01): : 5 - 25
  • [8] Flame-retardant Cellulose Based Composite Aerogel Membranes for Lithium Ion Batteries
    Wan, Ji-qiang
    Zhang, Jin-Ming
    Zheng, Xue-jing
    Jia, Feng-wei
    Yu, Jian
    Zhang, Jun
    ACTA POLYMERICA SINICA, 2020, 51 (08): : 933 - 941
  • [9] Colloidal Gibbsite Nanoparticle/Polyacrylamide Composites for Flame-Retardant Materials
    Trung, Le Gia
    Nguyen, Minh Kim
    Mishra, Rajneesh Kumar
    Kumar, Vipin
    Ryu, Jeong Won
    Jeon, Hwajun
    Tran, Nguyen Tien
    Gwag, Jin Seog
    ACS APPLIED NANO MATERIALS, 2023, 6 (18) : 16889 - 16902
  • [10] Flame-retardant composite materials
    NASA Conference Publication, 1991, (3109 pt 2):