Semiconducting triferroic multiferroics in van der Waals bilayer lattice

被引:0
|
作者
Chai, Shuyan [1 ,2 ]
Wu, Qian [1 ]
Zhang, Ting [1 ]
Zhang, Guangping [2 ]
Dai, Ying [1 ]
Huang, Baibiao [1 ]
Ma, Yandong [1 ]
机构
[1] Shandong Univ, Sch Phys, State Key Lab Crystal Mat, Shandanan St 27, Jinan 250100, Peoples R China
[2] Shandong Normal Univ, Sch Phys & Elect, Jinan 250358, Peoples R China
来源
PHYSICAL REVIEW APPLIED | 2024年 / 22卷 / 02期
关键词
FERROELECTRICITY; FERROELASTICITY; SYSTEMS;
D O I
10.1103/PhysRevApplied.22.024052
中图分类号
O59 [应用物理学];
学科分类号
摘要
Despite great fundamental and technological importance, triferroic multiferroics are still substantially unexplored, especially their semiconducting characteristics. Here, we propose a design principle for achieving semiconducting triferroic multiferroicity in a bilayer lattice by utilizing van der Waals stacking as a perturbation. We further demonstrate this principle in a real material: bilayer T '-TiBr2. Based on first-principles calculations, we show that bilayer T '-TiBr2 exhibits semiconducting and antiferromagnetic properties. Additionally, its crystal symmetry gives rise to 120 degrees ferroelasticity, and interlayer charge redistribution leads to an out-of-plane electric polarization, thereby realizing the intriguing semiconducting triferroicity. Furthermore, this system is predicted to possess several extraordinary properties, including ferroelastic control of the magnetization orientation and ferroelectric control of the absolute values of spin-polarization-density distributions.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Ferroelastic-ferroelectric multiferroics in a bilayer lattice
    Zhang, Ting
    Liang, Yan
    Xu, Xilong
    Huang, Baibiao
    Dai, Ying
    Ma, Yandong
    PHYSICAL REVIEW B, 2021, 103 (16)
  • [42] Recent Advances in van der Waals Heterojunctions Based on Semiconducting Transition Metal Dichalcogenides
    Li, Ruiping
    Li, Lain-Jong
    Cheng, Yingchun
    Huang, Wei
    ADVANCED ELECTRONIC MATERIALS, 2018, 4 (11):
  • [43] Gate dielectric-induced lattice strain and band gap tuning in van der Waals 2D semiconducting channels
    Kaur, Manpreet
    Neeshu, Km
    Saini, Jyoti
    Dash, Tapaswini
    Maharana, Akash Kumar
    Hazra, Kiran S.
    NANOSCALE, 2025, 17 (14) : 8872 - 8879
  • [44] Van der Waals quintessence
    Capozziello, S
    Cardone, VF
    Carloni, S
    Troisi, A
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON THINKING, OBSERVING AND MINING THE UNIVERSE, 2004, : 307 - 308
  • [45] JAN VAN DER WAALS
    Fuhring, Peter
    PRINT QUARTERLY, 2009, 26 (03) : 300 - 302
  • [46] Van Hove singularity, flat bands, Dirac states, and superconductivity in van der Waals-bonded and covalently bonded bilayer borophene with a coloring triangular lattice
    Liu, Yan
    Zhang, Yiming
    Xu, Meiling
    Feng, Jiaqi
    Hao, Jian
    Li, Yinwei
    PHYSICAL REVIEW B, 2025, 111 (08)
  • [47] Surface instability of a bilayer elastic film due to surface van der Waals forces
    Yoon, J
    Ru, CQ
    Mioduchowski, A
    JOURNAL OF APPLIED PHYSICS, 2005, 98 (11)
  • [48] Low-energy moire phonons in twisted bilayer van der Waals heterostructures
    Lu, Jonathan Z.
    Zhu, Ziyan
    Angeli, Mattia
    Larson, Daniel T.
    Kaxiras, Efthimios
    PHYSICAL REVIEW B, 2022, 106 (14)
  • [49] Nonlinear harmonic spectra in the bilayer van der Waals antiferromagnets CrX3
    Liu, Y. Q.
    Si, M. S.
    Zhang, G. P.
    PHYSICAL REVIEW B, 2024, 109 (09)
  • [50] Van der Waals heterostructures
    Barnes, Natalie
    NATURE REVIEWS METHODS PRIMERS, 2022, 2 (01):