Semiconducting triferroic multiferroics in van der Waals bilayer lattice

被引:0
|
作者
Chai, Shuyan [1 ,2 ]
Wu, Qian [1 ]
Zhang, Ting [1 ]
Zhang, Guangping [2 ]
Dai, Ying [1 ]
Huang, Baibiao [1 ]
Ma, Yandong [1 ]
机构
[1] Shandong Univ, Sch Phys, State Key Lab Crystal Mat, Shandanan St 27, Jinan 250100, Peoples R China
[2] Shandong Normal Univ, Sch Phys & Elect, Jinan 250358, Peoples R China
来源
PHYSICAL REVIEW APPLIED | 2024年 / 22卷 / 02期
关键词
FERROELECTRICITY; FERROELASTICITY; SYSTEMS;
D O I
10.1103/PhysRevApplied.22.024052
中图分类号
O59 [应用物理学];
学科分类号
摘要
Despite great fundamental and technological importance, triferroic multiferroics are still substantially unexplored, especially their semiconducting characteristics. Here, we propose a design principle for achieving semiconducting triferroic multiferroicity in a bilayer lattice by utilizing van der Waals stacking as a perturbation. We further demonstrate this principle in a real material: bilayer T '-TiBr2. Based on first-principles calculations, we show that bilayer T '-TiBr2 exhibits semiconducting and antiferromagnetic properties. Additionally, its crystal symmetry gives rise to 120 degrees ferroelasticity, and interlayer charge redistribution leads to an out-of-plane electric polarization, thereby realizing the intriguing semiconducting triferroicity. Furthermore, this system is predicted to possess several extraordinary properties, including ferroelastic control of the magnetization orientation and ferroelectric control of the absolute values of spin-polarization-density distributions.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Semiconducting van der Waals Interfaces as Artificial Semiconductors
    Ponomarev, Evgeniy
    Ubrig, Nicolas
    Gutierrez-Lezama, Ignacio
    Berger, Helmuth
    Morpurgo, Alberto F.
    NANO LETTERS, 2018, 18 (08) : 5146 - 5152
  • [2] Artificial Multiferroics and Enhanced Magnetoelectric Effect in van der Waals Heterostructures
    Lu, Yan
    Fei, Ruixiang
    Lu, Xiaobo
    Zhu, Linghan
    Wang, Li
    Yang, Li
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (05) : 6243 - 6249
  • [3] Van der Waals interaction in a boron nitride bilayer
    Hsing, Cheng-Rong
    Cheng, Ching
    Chou, Jyh-Pin
    Chang, Chun-Ming
    Wei, Ching-Ming
    NEW JOURNAL OF PHYSICS, 2014, 16
  • [4] Excitons and Trions in Bilayer van der Waals Heterostructures
    M. A. Semina
    Physics of the Solid State, 2019, 61 : 2218 - 2223
  • [5] Excitons and Trions in Bilayer van der Waals Heterostructures
    Semina, M. A.
    PHYSICS OF THE SOLID STATE, 2019, 61 (11) : 2218 - 2223
  • [6] Effect of van der Waals homogeneous interface on lattice thermal conductivity of Janus WSSe bilayer
    Li, Wentao
    Yang, Kang
    Yang, Le
    JAPANESE JOURNAL OF APPLIED PHYSICS, 2024, 63 (03)
  • [7] Tunable Exciton Funnel Using Moire Super lattice in Twisted van der Waals Bilayer
    Wu, Menghao
    Qian, Xiaofeng
    Li, Ju
    NANO LETTERS, 2014, 14 (09) : 5350 - 5357
  • [8] Aqueous Gating of van der Waals Materials on Bilayer Nanopaper
    Bao, Wenzhong
    Fang, Zhiqiang
    Wan, Jiayu
    Dai, Jiaqi
    Zhu, Hongli
    Han, Xiaogang
    Yang, Xiaofeng
    Preston, Colin
    Hu, Liangbing
    ACS NANO, 2014, 8 (10) : 10606 - 10612
  • [9] Electric manipulation of magnetism in bilayer van der Waals magnets
    Sun, Yu-Yun
    Zhu, Liang-Qing
    Li, Zhongyao
    Ju, Weiwei
    Gong, Shi-Jing
    Wang, Ji-Qing
    Chu, Jun-Hao
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2019, 31 (20)
  • [10] Nonlinear magnon transport in bilayer van der Waals antiferromagnets
    Mukherjee R.
    Verma S.
    Kundu A.
    Physical Review B, 2023, 107 (24)