Heterogeneous Treatment Effect-based Random Forest: HTERF

被引:0
|
作者
Jocteur, Berenice-Alexia [1 ,2 ]
Maume-Deschamps, Veronique [1 ]
Ribereau, Pierre [1 ]
机构
[1] Univ Jean Monnet, Univ Claude Bernard Lyon 1, Ecole Cent Lyon, ICJ UMR5208,CNRS,INSA Lyon, F-69622 Villeurbanne, France
[2] Natixis, Enterprise Risk Management, F-75013 Paris, France
关键词
Causal forest; Causal inference; Heterogeneous treatment effect; Potential outcomes;
D O I
10.1016/j.csda.2024.107970
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Estimates of causal effects are needed to answer what-if questions about shifts in policy, such as new treatments in pharmacology or new pricing strategies for business owners. A new non- parametric approach is proposed to estimate the heterogeneous treatment effect based on random forests (HTERF). The potential outcome framework with unconfoundedness shows that the HTERF is pointwise almost surely consistent with the true treatment effect. Interpretability results are also presented.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Piezoelectric effect-based detector for spectroscopic application
    Li, Jingsong
    Liu, Ningwu
    Ding, Junya
    Zhou, Sheng
    He, Tianbo
    Zhang, Lei
    OPTICS AND LASERS IN ENGINEERING, 2019, 115 (141-148) : 141 - 148
  • [22] Comparison of random forest methods for conditional average treatment effect estimation with a continuous treatment
    Tabib, Sami
    Larocque, Denis
    STATISTICAL METHODS IN MEDICAL RESEARCH, 2024, 33 (11-12) : 1952 - 1966
  • [23] A Short Survey on Forest Based Heterogeneous Treatment Effect Estimation Methods: Meta-learners and Specific Models
    Jiang, Hao
    Qi, Peng
    Zhou, Jingying
    Zhou, Jack
    Rao, Sharath
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 3006 - 3012
  • [24] Assessing the impact of two conventional wastewater treatment plants on small streams with effect-based methods
    Delgado, Catalina Trejos
    Dombrowski, Andrea
    Oehlmann, Joerg
    PEERJ, 2024, 12
  • [25] Assessing landslide susceptibility based on the random forest model and multi-source heterogeneous data
    Li, Mengxia
    Wang, Haiying
    Chen, Jinlong
    Zheng, Kang
    ECOLOGICAL INDICATORS, 2024, 158
  • [26] Advancements in effect-based surface water quality assessment
    De Baat, M. L.
    Van der Oost, R.
    Van der Lee, G. H.
    Wieringa, N.
    Hamers, T.
    Verdonschot, P. F. M.
    De Voogt, P.
    Kraak, M. H. S.
    WATER RESEARCH, 2020, 183
  • [27] Moire effect-based interference microscopy for biospecimen characterization
    Trusiak, Maciej
    Mico, Vicente
    Angel Picazo-Bueno, Jose
    Cywinska, Maria
    Zdankowski, Piotr
    Patorski, Krzysztof
    INTERFEROMETRY XIX, 2018, 10749
  • [28] A Review of Carbon Nanotubes Field Effect-Based Biosensors
    Alabsi, S. S.
    Ahmed, Abdelaziz Yousif
    Dennis, J. O.
    Khir, M. H. Md
    Algamili, A. S.
    IEEE ACCESS, 2020, 8 : 69509 - 69521
  • [29] Experimental demonstration of a Raman effect-based optical transistor
    Starodumov, AN
    Barmenkov, YO
    Martinez, A
    Torres, I
    Zenteno, LA
    OPTICS LETTERS, 1998, 23 (05) : 352 - 354
  • [30] Novel metabolomic method to assess the effect-based removal efficiency of advanced wastewater treatment techniques
    Spath, Jana
    Nording, Malin
    Lindberg, Richard
    Brodin, Tomas
    Jansson, Stina
    Yang, Jun
    Wan, Debin
    Hammock, Bruce
    Fick, Jerker
    ENVIRONMENTAL CHEMISTRY, 2020, 17 (01) : 1 - 5