Sentiment classification on product reviews using machine learning and deep learning techniques

被引:0
|
作者
Singh, Neha [1 ]
Jaiswal, Umesh Chandra [1 ]
机构
[1] MMMUT, Dept ITCA, Gorakhpur, India
关键词
Product Review; Sentiment Analysis; E-Commerce; Deep Learning; Machine Learning;
D O I
10.1007/s13198-024-02592-5
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Online product analysis is a frequently used tool that allows consumers to understand their needs readily. Every day, the selling and purchasing processes continue in an e-commerce store, and customer feedback keeps growing. Comments made by customers will serve as an evaluation of a product that customers have purchased. Customers can freely submit reviews with both positive and negative feedback in the e-commerce website's Comments section. The authors will study the above concerns, utilising the opinion analysis technique to differentiate between the positive, negative, and natural product review categories and using machine learning and deep learning methods like LSTM, GRU, Support Vector Machine, BiLSTM, Random Forest, and CNN. Word clouds make comparing the three sentiment classifications in our research easier. Our findings demonstrate how sentiment analysis may be used to pinpoint customer behaviour, mitigate risk factors, and meet consumer expectations. The findings of our experiment show that the Random Forest method will produce superior outcomes than other currently used techniques.
引用
收藏
页码:5726 / 5741
页数:16
相关论文
共 50 条
  • [21] Predicting the sentiment of SaaS online reviews using supervised machine learning techniques
    Alkalbani, Asma Musabah
    Ghamry, Ahmed Mohamed
    Hussain, Farookh Khadeer
    Hussain, Omar Khadeer
    2016 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2016, : 1547 - 1553
  • [22] Classification of sentiment reviews using n-gram machine learning approach
    Tripathy, Abinash
    Agrawal, Ankit
    Rath, Santanu Kumar
    EXPERT SYSTEMS WITH APPLICATIONS, 2016, 57 : 117 - 126
  • [23] A HYBRID DEEP LEARNING APPROACH FOR SENTIMENT ANALYSIS IN PRODUCT REVIEWS
    Kuang, Minghui
    Safa, Ramin
    Edalatpanah, Seyyed Ahmad
    Keyser, Robert S.
    FACTA UNIVERSITATIS-SERIES MECHANICAL ENGINEERING, 2023, 21 (03) : 479 - 500
  • [24] Classification of Product Review Sentiment by NLP and Machine Learning
    Das, Rely
    Hossain, Forhad
    Ahmed, Taufiq
    Devanath, Ananyna
    Akter, Shahnaz
    Sattar, Abdus
    2022 SECOND INTERNATIONAL CONFERENCE ON ADVANCES IN ELECTRICAL, COMPUTING, COMMUNICATION AND SUSTAINABLE TECHNOLOGIES (ICAECT), 2022,
  • [25] Onto-based sentiment classification using Machine Learning Techniques
    Saranya, K.
    Jayanthy, S.
    2017 INTERNATIONAL CONFERENCE ON INNOVATIONS IN INFORMATION, EMBEDDED AND COMMUNICATION SYSTEMS (ICIIECS), 2017,
  • [26] Twitter Sentiment Classification Using Machine Learning Techniques for Stock Markets
    Qasem, Mohammed
    Thulasiram, Ruppa
    Thulasiram, Parimala
    2015 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATIONS AND INFORMATICS (ICACCI), 2015, : 834 - 840
  • [27] Sentiment Analysis using Machine Learning and Deep Learning
    Chandra, Yogesh
    Jana, Antoreep
    PROCEEDINGS OF THE 7TH INTERNATIONAL CONFERENCE ON COMPUTING FOR SUSTAINABLE GLOBAL DEVELOPMENT (INDIACOM-2020), 2019, : 1 - 4
  • [28] A Review on Text Sentiment Analysis With Machine Learning and Deep Learning Techniques
    Mamani-Coaquira, Yonatan
    Villanueva, Edwin
    IEEE ACCESS, 2024, 12 : 193115 - 193130
  • [29] A Comparative Study of Machine Learning and Deep Learning Techniques for Sentiment Analysis
    Jain, Kruttika
    Kaushal, Shivani
    2018 7TH INTERNATIONAL CONFERENCE ON RELIABILITY, INFOCOM TECHNOLOGIES AND OPTIMIZATION (TRENDS AND FUTURE DIRECTIONS) (ICRITO) (ICRITO), 2018, : 483 - 487
  • [30] Performance Evaluation of Machine Learning and Deep Learning Techniques for Sentiment Analysis
    Mehta, Anushka
    Parekh, Yash
    Karamchandani, Sunil
    INFORMATION SYSTEMS DESIGN AND INTELLIGENT APPLICATIONS, INDIA 2017, 2018, 672 : 463 - 471