Brain tumors can be serious; consequently, rapid and accurate detection is crucial. Nevertheless, a variety of obstacles, such as poor imaging resolution, doubts over the accuracy of data, a lack of diverse tumor classes and stages, and the possibility of misunderstanding, present challenges to achieve an accurate and final diagnosis. Effective brain cancer detection is crucial for patients' safety and health. Deep learning systems provide the capability to assist radiologists in quickly and accurately detecting diagnoses. This study presents an innovative deep learning approach that utilizes the Swin Transformer. The suggested method entails integrating the Swin Transformer with the pretrained deep learning model Resnet50V2, called (SwT+Resnet50V2). The objective of this modification is to decrease memory utilization, enhance classification accuracy, and reduce training complexity. The self-attention mechanism of the Swin Transformer identifies distant relationships and captures the overall context. Resnet 50V2 improves both accuracy and training speed by extracting adaptive features from the Swin Transformer's dependencies. We evaluate the proposed framework using two publicly accessible brain magnetic resonance imaging (MRI) datasets, each including two and four distinct classes, respectively. Employing data augmentation and transfer learning techniques enhances model performance, leading to more dependable and cost-effective training. The suggested model achieves an impressive accuracy of 99.9% on the binary-labeled dataset and 96.8% on the four-labeled dataset, outperforming the VGG16, MobileNetV2, Resnet50V2, EfficientNetV2B3, ConvNeXtTiny, and convolutional neural network (CNN) algorithms used for comparison. This demonstrates that the Swin transducer, when combined with Resnet50V2, is capable of accurately diagnosing brain tumors. This method leverages the combination of SwT+Resnet50V2 to create an innovative diagnostic tool. Radiologists have the potential to accelerate and improve the detection of brain tumors, leading to improved patient outcomes and reduced risks.
机构:
Navy Med Univ, Changhai Hosp, Dept Radiol, Shanghai, Peoples R China
96601 Mil Hosp PLA, Dept Radiol, Huangshan, Anhui, Peoples R ChinaNavy Med Univ, Changhai Hosp, Dept Radiol, Shanghai, Peoples R China
Li, Qi
Li, Xuezhou
论文数: 0引用数: 0
h-index: 0
机构:
Navy Med Univ, Changhai Hosp, Dept Radiol, Shanghai, Peoples R ChinaNavy Med Univ, Changhai Hosp, Dept Radiol, Shanghai, Peoples R China
Li, Xuezhou
Liu, Wenbin
论文数: 0引用数: 0
h-index: 0
机构:
Navy Med Univ, Changhai Hosp, Dept Radiol, Shanghai, Peoples R ChinaNavy Med Univ, Changhai Hosp, Dept Radiol, Shanghai, Peoples R China
Liu, Wenbin
Yu, Jieyu
论文数: 0引用数: 0
h-index: 0
机构:
Navy Med Univ, Changhai Hosp, Dept Radiol, Shanghai, Peoples R ChinaNavy Med Univ, Changhai Hosp, Dept Radiol, Shanghai, Peoples R China
Yu, Jieyu
Chen, Yukun
论文数: 0引用数: 0
h-index: 0
机构:
Navy Med Univ, Changhai Hosp, Dept Radiol, Shanghai, Peoples R ChinaNavy Med Univ, Changhai Hosp, Dept Radiol, Shanghai, Peoples R China
Chen, Yukun
Zhu, Mengmeng
论文数: 0引用数: 0
h-index: 0
机构:
Navy Med Univ, Changhai Hosp, Dept Radiol, Shanghai, Peoples R ChinaNavy Med Univ, Changhai Hosp, Dept Radiol, Shanghai, Peoples R China
Zhu, Mengmeng
Li, Na
论文数: 0引用数: 0
h-index: 0
机构:
Navy Med Univ, Changhai Hosp, Dept Radiol, Shanghai, Peoples R ChinaNavy Med Univ, Changhai Hosp, Dept Radiol, Shanghai, Peoples R China
Li, Na
Liu, Fang
论文数: 0引用数: 0
h-index: 0
机构:
Navy Med Univ, Changhai Hosp, Dept Radiol, Shanghai, Peoples R ChinaNavy Med Univ, Changhai Hosp, Dept Radiol, Shanghai, Peoples R China
Liu, Fang
Wang, Tiegong
论文数: 0引用数: 0
h-index: 0
机构:
Navy Med Univ, Changhai Hosp, Dept Radiol, Shanghai, Peoples R ChinaNavy Med Univ, Changhai Hosp, Dept Radiol, Shanghai, Peoples R China
Wang, Tiegong
Fang, Xu
论文数: 0引用数: 0
h-index: 0
机构:
Navy Med Univ, Changhai Hosp, Dept Radiol, Shanghai, Peoples R ChinaNavy Med Univ, Changhai Hosp, Dept Radiol, Shanghai, Peoples R China
Fang, Xu
Li, Jing
论文数: 0引用数: 0
h-index: 0
机构:
Navy Med Univ, Changhai Hosp, Dept Radiol, Shanghai, Peoples R ChinaNavy Med Univ, Changhai Hosp, Dept Radiol, Shanghai, Peoples R China
Li, Jing
Lu, Jianping
论文数: 0引用数: 0
h-index: 0
机构:
Navy Med Univ, Changhai Hosp, Dept Radiol, Shanghai, Peoples R ChinaNavy Med Univ, Changhai Hosp, Dept Radiol, Shanghai, Peoples R China
Lu, Jianping
Shao, Chengwei
论文数: 0引用数: 0
h-index: 0
机构:
Navy Med Univ, Changhai Hosp, Dept Radiol, Shanghai, Peoples R ChinaNavy Med Univ, Changhai Hosp, Dept Radiol, Shanghai, Peoples R China
Shao, Chengwei
Bian, Yun
论文数: 0引用数: 0
h-index: 0
机构:
Navy Med Univ, Changhai Hosp, Dept Radiol, Shanghai, Peoples R ChinaNavy Med Univ, Changhai Hosp, Dept Radiol, Shanghai, Peoples R China
机构:
Shanghai Inst Med Imaging, Shanghai, Peoples R China
Fudan Univ, Shanghai Canc Ctr, Dept Radiol, 270 Dongan Rd, Shanghai 200032, Peoples R China
Fudan Univ, Shanghai Med Coll, Dept Oncol, Shanghai, Peoples R ChinaShanghai Inst Med Imaging, Shanghai, Peoples R China
Li, Jinhui
Qu, Feilin
论文数: 0引用数: 0
h-index: 0
机构:
Fudan Univ, Shanghai Canc Ctr, Dept Breast Surg, Shanghai, Peoples R ChinaShanghai Inst Med Imaging, Shanghai, Peoples R China
Qu, Feilin
Gong, Jing
论文数: 0引用数: 0
h-index: 0
机构:
Fudan Univ, Shanghai Canc Ctr, Dept Radiol, 270 Dongan Rd, Shanghai 200032, Peoples R China
Fudan Univ, Shanghai Med Coll, Dept Oncol, Shanghai, Peoples R ChinaShanghai Inst Med Imaging, Shanghai, Peoples R China
Gong, Jing
Sun, Shiyun
论文数: 0引用数: 0
h-index: 0
机构:
Fudan Univ, Shanghai Canc Ctr, Dept Radiol, 270 Dongan Rd, Shanghai 200032, Peoples R China
Fudan Univ, Shanghai Med Coll, Dept Oncol, Shanghai, Peoples R ChinaShanghai Inst Med Imaging, Shanghai, Peoples R China
Sun, Shiyun
Gu, Yajia
论文数: 0引用数: 0
h-index: 0
机构:
Fudan Univ, Shanghai Canc Ctr, Dept Radiol, 270 Dongan Rd, Shanghai 200032, Peoples R China
Fudan Univ, Shanghai Med Coll, Dept Oncol, Shanghai, Peoples R ChinaShanghai Inst Med Imaging, Shanghai, Peoples R China
Gu, Yajia
You, Chao
论文数: 0引用数: 0
h-index: 0
机构:
Fudan Univ, Shanghai Canc Ctr, Dept Radiol, 270 Dongan Rd, Shanghai 200032, Peoples R China
Fudan Univ, Shanghai Med Coll, Dept Oncol, Shanghai, Peoples R ChinaShanghai Inst Med Imaging, Shanghai, Peoples R China
You, Chao
Peng, Weijun
论文数: 0引用数: 0
h-index: 0
机构:
Fudan Univ, Shanghai Canc Ctr, Dept Radiol, 270 Dongan Rd, Shanghai 200032, Peoples R China
Fudan Univ, Shanghai Med Coll, Dept Oncol, Shanghai, Peoples R ChinaShanghai Inst Med Imaging, Shanghai, Peoples R China
DANG Yi GUO Li LV DongJiao WANG XiaoYing ZHANG Jue Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijing China Department of RadiologyPeking University First HospitalBeijing China College of EngineeringPeking UniversityBeijing China
论文数: 0引用数: 0
h-index: 0
DANG Yi GUO Li LV DongJiao WANG XiaoYing ZHANG Jue Academy for Advanced Interdisciplinary StudiesPeking UniversityBeijing China Department of RadiologyPeking University First HospitalBeijing China College of EngineeringPeking UniversityBeijing China