The digital twin of machine tools

被引:0
|
作者
Fischer A. [1 ]
Spescha D. [2 ]
Semm T. [1 ]
Ceresa N. [2 ]
Zäh M.F. [1 ]
机构
[1] Technische Universität München Institut für Werkzeugmaschinen und Betriebswissenschaften (iwb), Themengruppe Werkzeugmaschinen, Boltzmannstr. 15, Garching bei München
[2] AG Technoparkstr. 1, Zürich
来源
WT Werkstattstechnik | 2021年 / 111卷 / 03期
关键词
D O I
10.37544/1436-4980-2021-03-87
中图分类号
学科分类号
摘要
The digital twin is becoming increasingly important for the development of new machine generations and for process parallel simulations. Modern flexible multi-body simulation programs are particularly suitable for creating the relevant models. In this paper, the simulation environment MORe is presented, which is characterized by its user-friendliness and its computational efficiency. Furthermore, it is possible to study effects such as damping, which have hardly been considered in industrial environments so far. © 2021, VDI Fachmedien GmBbH & Co.. All rights reserved.
引用
收藏
页码:179 / 184
页数:5
相关论文
共 50 条
  • [21] Contour error reduction method for multi-axis CNC machine tools based on digital twin
    Zhang L.
    Liu J.
    Zhuang C.
    Wang Y.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2021, 27 (12): : 3391 - 3402
  • [22] Joint multi-objective dynamic scheduling of machine tools and vehicles in a workshop based on digital twin
    Guo, Mingyi
    Fang, Xifeng
    Wu, Qi
    Zhang, Shengwen
    Li, Qun
    JOURNAL OF MANUFACTURING SYSTEMS, 2023, 70 : 345 - 358
  • [23] DIGITAL CONTROLS FOR MACHINE-TOOLS
    STUTE, G
    WERKSTATTSTECHNIK ZEITSCHRIFT FUR INDUSTRIELLE FERTIGUNG, 1982, 72 : S91 - +
  • [24] CNC Machine Tools and Digital Twins
    Kabaldin Y.G.
    Shatagin D.A.
    Anosov M.S.
    Kolchin P.V.
    Kuz’mishina A.M.
    Russian Engineering Research, 2019, 39 (08): : 637 - 644
  • [25] Digital twin model for cutting tools in machining process
    Sun H.
    Pan J.
    Zhang J.
    Mo R.
    Jisuanji Jicheng Zhizao Xitong/Computer Integrated Manufacturing Systems, CIMS, 2019, 25 (06): : 1474 - 1480
  • [26] Digital Twin: Applying emulation for machine reconditioning
    Ayani, M.
    Ganeback, M.
    Ng, Amos H. C.
    51ST CIRP CONFERENCE ON MANUFACTURING SYSTEMS, 2018, 72 : 243 - 248
  • [27] A human digital twin for the M-Machine
    Saariluoma, Pertti
    Myllylä, Mari
    Karvonen, Antero
    Luimula, Mika
    Aho, Jami
    Discover Artificial Intelligence, 2024, 4 (01):
  • [28] Self learning-empowered thermal error control method of precision machine tools based on digital twin
    Chi Ma
    Hongquan Gui
    Jialan Liu
    Journal of Intelligent Manufacturing, 2023, 34 : 695 - 717
  • [29] Generating synthetic data for data-driven solutions via a digital twin for condition monitoring in machine tools
    Sicard, Brett
    Butler, Quade
    Wu, Yuandi
    Abdolahi, Sepehr
    Ziada, Youssef
    Gadsden, S. Andrew
    SYNTHETIC DATA FOR ARTIFICIAL INTELLIGENCE AND MACHINE LEARNING: TOOLS, TECHNIQUES, AND APPLICATIONS II, 2024, 13035
  • [30] Integration of Digital Twin, Machine-Learning and Industry 4.0 Tools for Anomaly Detection: An Application to a Food Plant
    Tancredi, Giovanni Paolo
    Vignali, Giuseppe
    Bottani, Eleonora
    SENSORS, 2022, 22 (11)