A Comprehensive Review of Remaining Useful Life Estimation Approaches for Rotating Machinery

被引:0
|
作者
Kumar, Shahil [1 ]
Raj, Krish Kumar [1 ]
Cirrincione, Maurizio [1 ]
Cirrincione, Giansalvo [2 ]
Franzitta, Vincenzo [3 ]
Kumar, Rahul Ranjeev [1 ]
机构
[1] Univ South Pacific, Sch Informat Technol Engn Math & Phys, Private Mail Bag Laucala Campus, Suva, Fiji
[2] Univ Picardie Jules Verne, Lab Novel Technol, F-80000 Amiens, France
[3] Univ Palermo, Dept Engn, I-90128 Palermo, Italy
关键词
bearings; condition monitoring; fault diagnosis; gearbox; health indicators; misalignment; prognosis; rotating machines; remaining useful life; ROLLING ELEMENT BEARINGS; FAULT-DIAGNOSIS; NEURAL-NETWORKS; MAHALANOBIS DISTANCE; INDUCTION-MOTORS; PREDICTION; PROGNOSTICS; FRAMEWORK; SYSTEMS; OPTIMIZATION;
D O I
10.3390/en17225538
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This review paper comprehensively analyzes the prognosis of rotating machines (RMs), focusing on mechanical-flaw and remaining-useful-life (RUL) estimation in industrial and renewable energy applications. It introduces common mechanical faults in rotating machinery, their causes, and their potential impacts on RM performance and longevity, particularly in wind, wave, and tidal energy systems, where reliability is crucial. The study outlines the primary procedures for RUL estimation, including data acquisition, health indicator (HI) construction, failure threshold (FT) determination, RUL estimation approaches, and evaluation metrics, through a detailed review of published work from the past six years. A detailed investigation of HI design using mechanical-signal-based, model-based, and artificial intelligence (AI)-based techniques is presented, emphasizing their relevance to condition monitoring and fault detection in offshore and hybrid renewable energy systems. The paper thoroughly explores the use of physics-based, data-driven, and hybrid models for prognosis. Additionally, the review delves into the application of advanced methods such as transfer learning and physics-informed neural networks for RUL estimation. The advantages and disadvantages of each method are discussed in detail, providing a foundation for optimizing condition-monitoring strategies. Finally, the paper identifies open challenges in prognostics of RMs and concludes with critical suggestions for future research to enhance the reliability of these technologies.
引用
收藏
页数:46
相关论文
共 50 条
  • [21] A Review of Remaining Useful Life Prediction Approaches for Mechanical Equipment
    Zhang, Yangyang
    Fang, Liqing
    Qi, Ziyuan
    Deng, Huiyong
    IEEE SENSORS JOURNAL, 2023, 23 (24) : 29991 - 30006
  • [22] Digital Twin Driven Few-Shot Prediction of Remaining Useful Life for Rotating Machinery
    Zhang C.
    Maz I.
    Liu B.
    Sunz H.
    Xu J.
    Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2023, 57 (12): : 168 - 178
  • [23] Deep transfer learning in machinery remaining useful life prediction: a systematic review
    Chen, Gaige
    Kong, Xianguang
    Cheng, Han
    Yang, Shengkang
    Wang, Xianzhi
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2025, 36 (01)
  • [24] A Graph Neural Network-Based Method for Predicting Remaining Useful Life of Rotating Machinery
    Long, Kun
    Zhang, Rongxin
    Long, Jianyu
    He, Ning
    Liu, Yu
    Li, Chuan
    2023 PROGNOSTICS AND HEALTH MANAGEMENT CONFERENCE, PHM, 2023, : 287 - 292
  • [25] Similarity-based prediction method for machinery remaining useful life: A review
    Bin Xue
    Huangyang Xu
    Xing Huang
    Ke Zhu
    Zhongbin Xu
    Hao Pei
    The International Journal of Advanced Manufacturing Technology, 2022, 121 : 1501 - 1531
  • [26] Similarity-based prediction method for machinery remaining useful life: A review
    Xue, Bin
    Xu, Huangyang
    Huang, Xing
    Zhu, Ke
    Xu, Zhongbin
    Pei, Hao
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 121 (3-4): : 1501 - 1531
  • [27] Remaining Useful Life Estimation of Rotating Machines using Octave Spectral Features
    Chelmiah, Eoghan T.
    McLoone, Violeta, I
    Kavanagh, Darren E.
    IECON 2020: THE 46TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2020, : 3031 - 3036
  • [28] A BiGRU method for remaining useful life prediction of machinery
    She, Daoming
    Jia, Minping
    MEASUREMENT, 2021, 167
  • [29] Advancements in bearing remaining useful life prediction methods: a comprehensive review
    Song, Liuyang
    Lin, Tianjiao
    Jin, Ye
    Zhao, Shengkai
    Li, Ye
    Wang, Huaqing
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (09)
  • [30] Remaining Useful Life Prediction using Deep Learning Approaches: A Review
    Wang, Youdao
    Zhao, Yifan
    Addepalli, Sri
    PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON THROUGH-LIFE ENGINEERING SERVICES (TESCONF 2019), 2020, 49 : 81 - 88