Particulate transport in porous media at pore-scale. Part 2: CFD-DEM and colloidal forces

被引:1
|
作者
Fogouang, Laurez Maya [1 ,2 ]
Andre, Laurent [1 ,2 ]
Leroy, Philippe [2 ]
Soulaine, Cyprien [1 ]
机构
[1] Univ Orleans, Inst Sci Terre Orleans ISTO, CNRS, UMR7327,BRGM, F-45071 Orleans, France
[2] Bur Rech Geol & Minieres, F-45060 Orleans, France
基金
欧洲研究理事会;
关键词
DLVO theory; JKR theory; Colloid deposition; Pore-scale modeling; CFD-DEM model; Pore-clogging; SURFACE CONDUCTIVITY; NUMERICAL-SIMULATION; PARTICLES; FLOW; MODEL; AGGREGATION; ATTACHMENT; DEPOSITION; DYNAMICS; CONTACT;
D O I
10.1016/j.jcp.2024.113439
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Pore-clogging by aggregation of fine particles is one of the key mechanisms in particulate transport in porous media. In this work, the unresolved-resolved four-way coupling CFD-DEM (Computational Fluid Dynamics- Discrete Element Method) proposed in Part 1 is coupled with colloidal forces (long-range interactions) to model the transport of charged particles and retention by aggregation at the pore-scale. The model includes hydro-mechanical interactions (e.g. collision, drag, buoyancy, gravity) and electrochemical interactions (e.g. Van der Waals attraction, electrostatic double layer repulsion) between the particles, the fluid, and the porous formation. An adhesive contact force based on the Johnson-Kendall-Roberts theory allows for realistic particle adhesion on the walls. The model robustness is verified using reference semi-analytical solutions of the particle dynamics including long-range interactions. Finally, our CFD-DEM for particulate transport including DLVO and JKR adhesive contact forces is used to investigate the effect of fluid salinity on pore-clogging and permeability reduction. Importantly and unlike other approaches, our CFDDEM model is not constrained by the size of the particle relative to the cell size. Our pore-scale model offers new possibilities to explore the impact of various parameters including particle size distribution, particle concentration, flow rates, and pore geometry structure on the particulate transport and retention in porous media.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] Pore-scale modeling of complex transport phenomena in porous media
    Chen, Li
    He, An
    Zhao, Jianlin
    Kang, Qinjun
    Li, Zeng-Yao
    Carmeliet, Jan
    Shikazono, Naoki
    Tao, Wen-Quan
    PROGRESS IN ENERGY AND COMBUSTION SCIENCE, 2022, 88
  • [22] Characteristics of pore-scale events and their impact on transport in porous media
    Sin, Sotheavuth
    Susanto, Wilson
    Nasir, Muhammad
    PHYSICS OF FLUIDS, 2025, 37 (03)
  • [23] Experimental analysis of pore-scale flow and transport in porous media
    Rashidi, M
    Peurrung, L
    Tompson, AFB
    Kulp, TJ
    ADVANCES IN WATER RESOURCES, 1996, 19 (03) : 163 - 180
  • [24] Characterisation of reactive transport in pore-scale correlated porous media
    Liu, Min
    Mostaghimi, Peyman
    CHEMICAL ENGINEERING SCIENCE, 2017, 173 : 121 - 130
  • [25] Pore-scale statistics of flow and transport through porous media
    Aramideh, Soroush
    Vlachos, Pavlos P.
    Ardekani, Arezoo M.
    PHYSICAL REVIEW E, 2018, 98 (01)
  • [26] CFD-DEM simulation of proppant transport by supercritical CO2 in a vertical planar fracture
    Zheng, Yong
    Wang, Haizhu
    Yang, Bing
    Hu, Yi
    Shen, Zhonghou
    Wen, Haitao
    Yan, Wanjuan
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2020, 84
  • [27] Pore-scale quantification of colloid transport in saturated porous media
    Smith, Jennifer
    Gao, Bin
    Funabashi, Hisakage
    Tran, Thua N.
    Luo, Dan
    Ahner, Beth A.
    Steenhuis, Tammo S.
    Hay, Anthony G.
    Walter, M. Todd
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008, 42 (02) : 517 - 523
  • [28] Pore-scale simulations of flow, transport, and reaction in porous media
    Chen, SY
    Zhang, DX
    Kang, QJ
    Computational Methods in Water Resources, Vols 1 and 2, 2004, 55 : 49 - 60
  • [29] Mechanics of the penetration and filtration of cement-based grout in porous media: New insights from CFD-DEM simulations
    Zhu, Yanzhen
    Sun, Honglei
    Xu, Shanlin
    Hu, Lingkai
    Cao, Hongtao
    Cai, Yuanqiang
    Liu, Junwei
    TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2023, 133
  • [30] Pore-scale mass and reactant transport in multiphase porous media flows
    Parmigiani, A.
    Huber, C.
    Bachmann, O.
    Chopard, B.
    JOURNAL OF FLUID MECHANICS, 2011, 686 : 40 - 76