Object Detection for Remote Sensing Based on the Enhanced YOLOv8 With WBiFPN

被引:1
|
作者
Shen, Lingyun [1 ]
Lang, Baihe [2 ]
Song, Zhengxun [2 ,3 ]
机构
[1] Taiyuan Inst Technol, Dept Elect Engn, Taiyuan 030008, Peoples R China
[2] Changchun Univ Sci & Technol, Sch Elect & Informat Engn, Changchun 130022, Peoples R China
[3] Changchun Univ Sci & Technol, Overseas Expertise Intro Project Discipline Innova, Changchun 130022, Peoples R China
来源
IEEE ACCESS | 2024年 / 12卷
关键词
Object detection; feature extraction; attention mechanism; remote sensing; NETWORK; ATTENTION;
D O I
10.1109/ACCESS.2024.3487492
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
To address the challenges of object detection in complex remote sensing imagery, where the YOLO backbone network struggles with adaptive learning of feature distributions, leading to insufficient multi-scale feature learning capabilities and low detection accuracy for small and occluded objects, the lightweight Enhanced YOLOv8 with WBiFPN (Weighted Bidirectional Feature Pyramid Network) model is introduced in this paper. This model is designed to enhance multi-scale feature learning performance. It incorporates a feature fusion network based on WBiFPN and introduces the EMA (Efficient Multi-Scale Attention Module) to strengthen the representation of semantic and spatial information, thereby deepening the integration of multi-scale features. The model integrates RepConv (Re-parameterized Convolution) and ConvNeXt C2f in the shallow layers of the backbone network to optimize feature extraction, while the deeper layers include a BoT (Bottleneck Transformer Model) to further enhance multi-scale feature extraction capabilities. To reduce model parameters and computational complexity, the neck network employs a simplified Slim-Neck structure. Experimental results demonstrate that the Enhanced YOLOv8 model exhibits superior performance. Compared to the YOLOv8-n/s/m/l/x series models, the proposed model achieves mean Average Precision (mAP@0.5) of 94.8%, 91.6%, and 82.0% on the NWPU VHR-10, DIOR, and DOTA datasets, respectively, representing improvements of 3.2%, 2.5%, and 2.5%. The average inference speeds are 82 fps, 79 fps, and 76 fps, meeting the real-time requirements of inference. Furthermore, the Enhanced YOLOv8 model outperforms other mainstream models in detection performance.
引用
收藏
页码:158239 / 158257
页数:19
相关论文
共 50 条
  • [21] Small Object Detection in Aerial Drone Imagery based on YOLOv8
    Pan, Junyu
    Zhang, Yujun
    IAENG International Journal of Computer Science, 2024, 51 (09) : 1346 - 1354
  • [22] Underwater Object Detection in Marine Ranching Based on Improved YOLOv8
    Jia, Rong
    Lv, Bin
    Chen, Jie
    Liu, Hailin
    Cao, Lin
    Liu, Min
    JOURNAL OF MARINE SCIENCE AND ENGINEERING, 2024, 12 (01)
  • [23] AMW-YOLOv8n: Road Scene Object Detection Based on an Improved YOLOv8
    Wu, Donghao
    Fang, Chao
    Zheng, Xiaogang
    Liu, Jue
    Wang, Shengchun
    Huang, Xinyu
    ELECTRONICS, 2024, 13 (20)
  • [24] An Improved YOLOv8 Network for Multi-Object Detection with Large-Scale Differences in Remote Sensing Images
    Li, Zhaofei
    Zhou, Hao
    Zhang, Yijie
    Tao, Hongjie
    Yu, Hongchun
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2024, 38 (14)
  • [25] HR-YOLOv8: A Crop Growth Status Object Detection Method Based on YOLOv8
    Zhang, Jin
    Yang, Wenzhong
    Lu, Zhifeng
    Chen, Danny
    ELECTRONICS, 2024, 13 (09)
  • [26] An improved YOLOv8 model enhanced with detail and global features for underwater object detection
    Zhai, Zheng-Li
    Niu, Niu-Wang-Jie
    Feng, Bao-Ming
    Xu, Shi-Ya
    Qu, Chun-Yu
    Zong, Chao
    PHYSICA SCRIPTA, 2024, 99 (09)
  • [27] YOLOv8-QSD: An Improved Small Object Detection Algorithm for Autonomous Vehicles Based on YOLOv8
    Wang, Hai
    Liu, Chenyu
    Cai, Yingfeng
    Chen, Long
    Li, Yicheng
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2024, 73 : 1 - 16
  • [28] SES-YOLOv8n: automatic driving object detection algorithm based on improved YOLOv8
    Sun, Yang
    Zhang, Yuhang
    Wang, Haiyang
    Guo, Jianhua
    Zheng, Jiushuai
    Ning, Haonan
    SIGNAL IMAGE AND VIDEO PROCESSING, 2024, 18 (05) : 3983 - 3992
  • [29] A Raisin Foreign Object Target Detection Method Based on Improved YOLOv8
    Ning, Meng
    Ma, Hongrui
    Wang, Yuqian
    Cai, Liyang
    Chen, Yiliang
    APPLIED SCIENCES-BASEL, 2024, 14 (16):
  • [30] Dense object detection methods in RAW UAV imagery based on YOLOv8
    Wu, Zhenwei
    Wang, Xinfa
    Jia, Meng
    Liu, Minghao
    Sun, Chengxiu
    Wu, Chenyang
    Wang, Jianping
    SCIENTIFIC REPORTS, 2024, 14 (01):