Formal contracts mitigate social dilemmas in multi-agent reinforcement learning

被引:0
|
作者
Haupt, Andreas [1 ]
Christoffersen, Phillip [1 ]
Damani, Mehul [1 ]
Hadfield-Menell, Dylan [1 ]
机构
[1] MIT, Comp Sci & Artificial Intelligence Lab, 32 Vassar St, Cambridge, MA 02139 USA
关键词
Social dilemma; Decentralized training; Formal contracts; LEVEL;
D O I
10.1007/s10458-024-09682-5
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Multi-agent Reinforcement Learning (MARL) is a powerful tool for training autonomous agents acting independently in a common environment. However, it can lead to sub-optimal behavior when individual incentives and group incentives diverge. Humans are remarkably capable at solving these social dilemmas. It is an open problem in MARL to replicate such cooperative behaviors in selfish agents. In this work, we draw upon the idea of formal contracting from economics to overcome diverging incentives between agents in MARL. We propose an augmentation to a Markov game where agents voluntarily agree to binding transfers of reward, under pre-specified conditions. Our contributions are theoretical and empirical. First, we show that this augmentation makes all subgame-perfect equilibria of all Fully Observable Markov Games exhibit socially optimal behavior, given a sufficiently rich space of contracts. Next, we show that for general contract spaces, and even under partial observability, richer contract spaces lead to higher welfare. Hence, contract space design solves an exploration-exploitation tradeoff, sidestepping incentive issues. We complement our theoretical analysis with experiments. Issues of exploration in the contracting augmentation are mitigated using a training methodology inspired by multi-objective reinforcement learning: Multi-Objective Contract Augmentation Learning. We test our methodology in static, single-move games, as well as dynamic domains that simulate traffic, pollution management, and common pool resource management.
引用
收藏
页数:38
相关论文
共 50 条
  • [21] Social Influence as Intrinsic Motivation for Multi-Agent Deep Reinforcement Learning
    Jaques, Natasha
    Lazaridou, Angeliki
    Hughes, Edward
    Gulcehre, Caglar
    Ortega, Pedro A.
    Strouse, D. J.
    Leibo, Joel Z.
    de Freitas, Nando
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [22] Multi-agent Contracts
    Dutting, Paul
    Ezra, Tomer
    Feldman, Michal
    Kesselheim, Thomas
    PROCEEDINGS OF THE 55TH ANNUAL ACM SYMPOSIUM ON THEORY OF COMPUTING, STOC 2023, 2023, : 1311 - 1324
  • [23] MAGNet: Multi-agent Graph Network for Deep Multi-agent Reinforcement Learning
    Malysheva, Aleksandra
    Kudenko, Daniel
    Shpilman, Aleksei
    2019 XVI INTERNATIONAL SYMPOSIUM PROBLEMS OF REDUNDANCY IN INFORMATION AND CONTROL SYSTEMS (REDUNDANCY), 2019, : 171 - 176
  • [24] TEAM POLICY LEARNING FOR MULTI-AGENT REINFORCEMENT LEARNING
    Cassano, Lucas
    Alghunaim, Sulaiman A.
    Sayed, Ali H.
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 3062 - 3066
  • [25] Aggregation Transfer Learning for Multi-Agent Reinforcement learning
    Xu, Dongsheng
    Qiao, Peng
    Dou, Yong
    2021 2ND INTERNATIONAL CONFERENCE ON BIG DATA & ARTIFICIAL INTELLIGENCE & SOFTWARE ENGINEERING (ICBASE 2021), 2021, : 547 - 551
  • [26] Learning to Communicate with Deep Multi-Agent Reinforcement Learning
    Foerster, Jakob N.
    Assael, Yannis M.
    de Freitas, Nando
    Whiteson, Shimon
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [27] Consensus Learning for Cooperative Multi-Agent Reinforcement Learning
    Xu, Zhiwei
    Zhang, Bin
    Li, Dapeng
    Zhang, Zeren
    Zhou, Guangchong
    Chen, Hao
    Fan, Guoliang
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 10, 2023, : 11726 - 11734
  • [28] Concept Learning for Interpretable Multi-Agent Reinforcement Learning
    Zabounidis, Renos
    Campbell, Joseph
    Stepputtis, Simon
    Hughes, Dana
    Sycara, Katia
    CONFERENCE ON ROBOT LEARNING, VOL 205, 2022, 205 : 1828 - 1837
  • [29] Learning structured communication for multi-agent reinforcement learning
    Sheng, Junjie
    Wang, Xiangfeng
    Jin, Bo
    Yan, Junchi
    Li, Wenhao
    Chang, Tsung-Hui
    Wang, Jun
    Zha, Hongyuan
    AUTONOMOUS AGENTS AND MULTI-AGENT SYSTEMS, 2022, 36 (02)
  • [30] Learning structured communication for multi-agent reinforcement learning
    Junjie Sheng
    Xiangfeng Wang
    Bo Jin
    Junchi Yan
    Wenhao Li
    Tsung-Hui Chang
    Jun Wang
    Hongyuan Zha
    Autonomous Agents and Multi-Agent Systems, 2022, 36