Inpainting Computational Fluid Dynamics with Physics-Informed Variational Autoencoder

被引:0
|
作者
Wang, Jiamin [1 ]
Yan, Zhexi [1 ]
Wang, Xiaokun [1 ,2 ,3 ]
Zhang, Yalan [1 ,2 ]
Guo, Yu [4 ]
机构
[1] School of Intelligence Science and Technology, University of Science and Technology Beijing, Beijing,100083, China
[2] Shunde Graduate School, University of Science and Technology Beijing, Foshan,528300, China
[3] Beijing Advanced Innovation Center for Materials Genome Engineering, University of Science and Technology Beijing, Beijing,100083, China
[4] School of Computer and Communication Engineering, University of Science and Technology Beijing, Beijing,100083, China
关键词
Compendex;
D O I
10.13190/j.jbupt.2023-305
中图分类号
学科分类号
摘要
Computational fluid dynamics - Flow fields - Variational techniques
引用
收藏
页码:29 / 35
相关论文
共 50 条
  • [21] Physics-informed machine learning for modeling multidimensional dynamics
    Abbasi, Amirhassan
    Kambali, Prashant N.
    Shahidi, Parham
    Nataraj, C.
    NONLINEAR DYNAMICS, 2024, 112 (24) : 21565 - 21585
  • [22] Physics-informed Spline Learning for Nonlinear Dynamics Discovery
    Sun, Fangzheng
    Liu, Yang
    Sun, Hao
    PROCEEDINGS OF THE THIRTIETH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, IJCAI 2021, 2021, : 2054 - 2061
  • [23] Accelerating lensed quasar discovery and modeling with physics-informed variational autoencoders
    Andika, Irham T.
    Schuldt, Stefan
    Suyu, Sherry H.
    Bag, Satadru
    Canameras, Raoul
    Melo, Alejandra
    Grillo, Claudio
    Chan, James H. H.
    ASTRONOMY & ASTROPHYSICS, 2025, 694
  • [24] Optimizing Variational Physics-Informed Neural Networks Using Least Squares
    Uriarte, Carlos
    Bastidas, Manuela
    Pardo, David
    Taylor, Jamie M.
    Rojas, Sergio
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2025, 185 : 76 - 93
  • [25] Physics-informed variational inference for uncertainty quantification of stochastic differential equations
    Shin, Hyomin
    Choi, Minseok
    JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 487
  • [26] Φ-DVAE: Physics-informed dynamical variational autoencoders for unstructured data assimilation
    Glyn-Davies, Alex
    Duffin, Connor
    Akyildiz, O. Deniz
    Girolami, Mark
    JOURNAL OF COMPUTATIONAL PHYSICS, 2024, 515
  • [27] Variational inference of ice shelf rheology with physics-informed machine learning
    Riel, Bryan
    Minchew, Brent
    JOURNAL OF GLACIOLOGY, 2023, 69 (277) : 1167 - 1186
  • [29] Physics-informed neural networks for learning fluid flows with symmetry
    Kim, Younghyeon
    Kwak, Hyungyeol
    Nam, Jaewook
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2023, 40 (09) : 2119 - 2127
  • [30] Physics-informed neural networks (PINNs) for fluid mechanics: a review
    Shengze Cai
    Zhiping Mao
    Zhicheng Wang
    Minglang Yin
    George Em Karniadakis
    Acta Mechanica Sinica, 2021, 37 : 1727 - 1738