Short-term electricity load forecasting based on improved sparrow search algorithm with optimized BiLSTM

被引:1
|
作者
Yang M. [1 ,2 ]
Zhang Y. [1 ]
Ai Y. [1 ]
机构
[1] Metrology Center, Yunnan Power Grid Co. Ltd., Kunming
[2] Metrology Center, Yunnan Key Laboratory of Green Energy Electric Power Measurement Digitalization Control and Protection, Kunming
关键词
BiLSTM; short-term electricity load prediction; SMSSA;
D O I
10.1002/adc2.160
中图分类号
学科分类号
摘要
Short-term electricity load forecasts (STELF) is an essential part of power system and operation, capable of balancing electricity demand and is vital to the safety and efficient operation of the power system. The research improves the Long short-term memory (LSTM), combines it with Bidirectional recurrent neural network (BIRNN), and obtains the improved Bidirectional Long Short-Term Memory Network (BiLSTM) forecasting model. The Sparse Search Algorithm (SSA) can provide a new solution to more difficult global optimization problems and has been improved due to the shortcomings of the search and detection mechanisms. and a simplex mechanism is introduced to obtain an improved Search Mechanism Sparse Search Algorithm (SMSSA) optimized pathfinding algorithm. And constructs the SMSSA-based optimized BiLSTM for STELF model. By choosing actual data, the model's prediction behavior is confirmed. The results showed that, in descending order, BiLSTM, LSTM, and Recurrent Neural Network (RNN) had the best fitting effects between the predicted and actual values. BiLSTM also had the highest prediction accuracy, with error values of 95.7059 for Root Mean Square Error (RMSE), 79.1575 for Mean Absolute Error (MAE), and 2.1260% for Mean Absolute Percent Error (MAPE). After SMSSA optimized the parameters, SMSSA-BiLSTM had the best fit and had errors that were much lower than those of the other two models. According to the three error judgment metrics of RMSE, MAE, and MAPE, the errors were 82.6298, 71.9029, and 2.0952%, respectively. This showed that SMSSA-BiLSTM performed well in short-term power load forecasting, offering security for the power system's safe operation. © 2023 John Wiley & Sons Ltd.
引用
收藏
相关论文
共 50 条
  • [41] Support Vector Machine Optimized with Genetic Algorithm for Short-term Load Forecasting
    Ma, Lihong
    Zhou, Shugong
    Lin, Ming
    KAM: 2008 INTERNATIONAL SYMPOSIUM ON KNOWLEDGE ACQUISITION AND MODELING, PROCEEDINGS, 2008, : 654 - 657
  • [42] Short-term load forecasting for Baghdad Electricity Region
    Al-Shakarchi, M.R.G.
    Ghulaim, M.M.
    Electric Machines and Power Systems, 2000, 28 (1-6): : 355 - 371
  • [43] Short-term load forecasting for Baghdad electricity region
    Al-Shakarchi, MRG
    Ghulaim, MM
    ELECTRIC MACHINES AND POWER SYSTEMS, 2000, 28 (04): : 355 - 371
  • [44] A new method for short-term electricity load forecasting
    Wang, Jing-Min
    Wang, Li-Ping
    TRANSACTIONS OF THE INSTITUTE OF MEASUREMENT AND CONTROL, 2008, 30 (3-4) : 331 - 344
  • [45] Short-Term Load Forecasting of the Greek Electricity System
    Stamatellos, George
    Stamatelos, Tassos
    APPLIED SCIENCES-BASEL, 2023, 13 (04):
  • [46] Short-term electricity load forecasting of buildings in microgrids
    Chitsaz, Hamed
    Shaker, Hamid
    Zareipour, Hamidreza
    Wood, David
    Amjady, Nima
    ENERGY AND BUILDINGS, 2015, 99 : 50 - 60
  • [47] Short-Term Electricity Load Forecasting with Machine Learning
    Madrid, Ernesto Aguilar
    Antonio, Nuno
    INFORMATION, 2021, 12 (02) : 1 - 21
  • [48] Short-term electric load forecasting based on singular spectrum analysis and support vector machine optimized by Cuckoo search algorithm
    Zhang, Xiaobo
    Wang, Jianzhou
    Zhang, Kequan
    ELECTRIC POWER SYSTEMS RESEARCH, 2017, 146 : 270 - 285
  • [49] Short-Term Load Forecasting Based on Improved TCN and DenseNet
    Liu, Mingping
    Qin, Hao
    Cao, Ran
    Deng, Suhui
    IEEE ACCESS, 2022, 10 : 115945 - 115957
  • [50] Short-Term Load Forecasting Method Based on PE-SFTCN-BILSTM Network
    Zhang, Ning
    Wei, Yan
    Zeng, Pan
    PROCEEDINGS OF 2023 7TH INTERNATIONAL CONFERENCE ON ELECTRONIC INFORMATION TECHNOLOGY AND COMPUTER ENGINEERING, EITCE 2023, 2023, : 157 - 165