No-reference video quality assessment based on human visual perception

被引:0
|
作者
Zhou, Zhou [1 ]
Kong, Guangqian [1 ]
Duan, Xun [1 ]
Long, Huiyun [1 ]
机构
[1] Guizhou Univ, Coll Comp Sci & Technol, State Key Lab Publ Big Data, Guiyang, Peoples R China
基金
中国国家自然科学基金;
关键词
video quality assessment; UGC videos; human visual perception; attention;
D O I
10.1117/1.JEI.33.4.043029
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Conducting video quality assessment (VQA) for user-generated content (UGC) videos and achieving consistency with subjective quality assessment are highly challenging tasks. We propose a no-reference video quality assessment (NR-VQA) method for UGC scenarios by considering characteristics of human visual perception. To distinguish between varying levels of human attention within different regions of a single frame, we devise a dual-branch network. This network extracts spatial features containing positional information of moving objects from frame-level images. In addition, we employ the temporal pyramid pooling module to effectively integrate temporal features of different scales, enabling the extraction of inter-frame temporal information. To mitigate the time-lag effect in the human visual system, we introduce the temporal pyramid attention module. This module evaluates the significance of individual video frames and simulates the varying attention levels exhibited by humans towards frames. We conducted experiments on the KoNViD-1k, LIVE-VQC, CVD2014, and YouTube-UGC databases. The experimental results demonstrate the superior performance of our proposed method compared to recent NR-VQA techniques in terms of both objective assessment and consistency with subjective assessment. (c) 2024 SPIE and IS&T
引用
收藏
页数:15
相关论文
共 50 条
  • [21] An improved model for no-reference image quality assessment and a no-reference video quality assessment model based on frame analysis
    Mukesh Kumar Rohil
    Neetika Gupta
    Prakash Yadav
    Signal, Image and Video Processing, 2020, 14 : 205 - 213
  • [22] No-Reference Video Shakiness Quality Assessment
    Cui, Zhaoxiong
    Jiang, Tingting
    COMPUTER VISION - ACCV 2016, PT V, 2017, 10115 : 396 - 411
  • [23] An improved model for no-reference image quality assessment and a no-reference video quality assessment model based on frame analysis
    Rohil, Mukesh Kumar
    Gupta, Neetika
    Yadav, Prakash
    SIGNAL IMAGE AND VIDEO PROCESSING, 2020, 14 (01) : 205 - 213
  • [24] COME for No-Reference Video Quality Assessment
    Wang, Chunfeng
    Su, Li
    Zhang, Weigang
    IEEE 1ST CONFERENCE ON MULTIMEDIA INFORMATION PROCESSING AND RETRIEVAL (MIPR 2018), 2018, : 232 - 237
  • [25] Predictive no-reference assessment of video quality
    Vega, Maria Torres
    Mocanu, Decebal Constantin
    Stavrou, Stavros
    Liotta, Antonio
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2017, 52 : 20 - 32
  • [26] Predictive no-reference assessment of video quality
    Torres Vega M.
    Mocanu D.C.
    Stavrou S.
    Liotta A.
    Torres Vega, Maria (m.torres.vega@tue.nl), 1600, Elsevier B.V., Netherlands (52): : 20 - 32
  • [27] NO-REFERENCE IMAGE QUALITY ASSESSMENT BASED ON VISUAL CODEBOOK
    Ye, Peng
    Doermann, David
    2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011,
  • [28] No-reference pixel based video quality assessment for HEVC decoded video
    Huang, Xin
    Sogaard, Jacob
    Forchhammer, Soren
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2017, 43 : 173 - 184
  • [29] No-reference Mobile Video Quality Assessment Based on Video Natural Statistics
    Shi Wenjuan
    Sun Yanjing
    Zuo Haiwei
    Cao Qi
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2018, 40 (01) : 143 - 150
  • [30] No-Reference Quality Assessment of Transmitted Stereoscopic Videos Based on Human Visual System
    Hasan, Md Mehedi
    Islam, Md Ariful
    Rahman, Sejuti
    Frater, Michael R.
    Arnold, John F.
    APPLIED SCIENCES-BASEL, 2022, 12 (19):