Parallel-serial architecture with instance correlation label-specific features for multi-label learning

被引:0
|
作者
Li, Yi-Zhang [1 ,3 ]
Min, Fan [1 ,2 ,3 ]
机构
[1] Southwest Petr Univ, Sch Comp Sci & Software Engn, Chengdu 610500, Peoples R China
[2] Southwest Petr Univ, Inst Artificial Intelligence, Chengdu 610500, Peoples R China
[3] Southwest Petr Univ, Intelligent Oil & Gas Lab, Chengdu 610500, Peoples R China
关键词
Label-specific features; Correlations; Neural network; Multi-label learning; FEATURE-SELECTION;
D O I
10.1016/j.knosys.2024.112568
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Feature extraction plays a crucial role in capturing data correlations, thereby improving the performance of multi-label learning models. Popular approaches mainly include feature space manipulation techniques, such as recursive feature elimination, and feature alternative techniques, such as label-specific feature extraction. However, the former does not utilize label information, while the latter does not consider correlation among instances. In this study, we propose a label-specific feature extraction approach embedding instance correlation by a joint loss function under a parallel-serial architecture (LSIC-PS). Our approach incorporates three main techniques. First, we employ a parallel isomorphic network to extract label-specific features, which are directly integrated into a serial network to enhance label correlation. Second, we introduce instance correlation to guide feature extraction in parallel networks, leveraging label information from other instances to improve generalization. Third, we design a parameter-setting strategy to control a new joint loss function, adapting its instance correlation proportion to different datasets. We conduct experiments on sixteen widely used datasets and compare the results of our approach with those of twelve popular algorithms. Across eight evaluation metrics, LSIC-PS demonstrates state-of-art performance in multi-label learning. The source code is available at github.com/fansmale/lsic-ps.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Learning multi-label label-specific features via global and local label correlations
    Dawei Zhao
    Qingwei Gao
    Yixiang Lu
    Dong Sun
    Soft Computing, 2022, 26 : 2225 - 2239
  • [22] Learning multi-label label-specific features via global and local label correlations
    Zhao, Dawei
    Gao, Qingwei
    Lu, Yixiang
    Sun, Dong
    SOFT COMPUTING, 2022, 26 (05) : 2225 - 2239
  • [23] Multi-Label Learning with Missing Labels via Common and Label-Specific Features
    Sun, Mengxuan
    Li, Peipei
    Li, Junlong
    Hu, Xuegang
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [24] Bi-directional mapping for multi-label learning of label-specific features
    Tan, Yi
    Sun, Dong
    Shi, Yu
    Gao, Liuya
    Gao, Qingwei
    Lu, Yixiang
    APPLIED INTELLIGENCE, 2022, 52 (07) : 8147 - 8166
  • [25] Multi-label learning with label-specific feature reduction
    Xu, Suping
    Yang, Xibei
    Yu, Hualong
    Yu, Dong-Jun
    Yang, Jingyu
    Tsang, Eric C. C.
    KNOWLEDGE-BASED SYSTEMS, 2016, 104 : 52 - 61
  • [26] Multi-label learning based on neighborhood rough set label-specific features
    Zhang, Jiadong
    Song, Jingjing
    Li, Huige
    Wang, Xun
    Yang, Xibei
    INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2025, 178
  • [27] Learning Common and Label-Specific Features for Multi-Label Classification With Missing Labels
    Li, Runxin
    Ouyang, Zexian
    Shang, Zhenhong
    Jia, Lianyin
    Li, Xiaowu
    IEEE ACCESS, 2024, 12 : 81170 - 81195
  • [28] Multi-label Learning with Label-Specific Feature Selection
    Yan, Yan
    Li, Shining
    Yang, Zhe
    Zhang, Xiao
    Li, Jing
    Wang, Anyi
    Zhang, Jingyu
    NEURAL INFORMATION PROCESSING, ICONIP 2017, PT I, 2017, 10634 : 305 - 315
  • [29] Learning label-specific features via neural network for multi-label classification
    Jia, Ling
    Sun, Dong
    Shi, Yu
    Tan, Yi
    Gao, Qingwei
    Lu, Yixiang
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2023, 14 (04) : 1161 - 1177
  • [30] Bi-directional mapping for multi-label learning of label-specific features
    Yi Tan
    Dong Sun
    Yu Shi
    Liuya Gao
    Qingwei Gao
    Yixiang Lu
    Applied Intelligence, 2022, 52 : 8147 - 8166