CONVERGENCE OF A REGULARIZED FINITE ELEMENT DISCRETIZATION OF THE TWO-DIMENSIONAL MONGE–AMPÈRE EQUATION

被引:0
|
作者
Gallistl, Dietmar [1 ]
Tran, Ngoc Tien [1 ]
机构
[1] Institut für Mathematik, Friedrich-Schiller-Universität Jena, Jena,07743, Germany
来源
arXiv | 2021年
关键词
921.5 Optimization Techniques - 921.6 Numerical Methods;
D O I
暂无
中图分类号
学科分类号
摘要
Nonlinear equations
引用
收藏
相关论文
共 50 条
  • [31] The Monge–Ampère equation with Guillemin boundary conditions
    Daniel Rubin
    Calculus of Variations and Partial Differential Equations, 2015, 54 : 951 - 968
  • [32] Regularity of Solutions to the Quaternionic Monge–Ampère Equation
    Sławomir Kołodziej
    Marcin Sroka
    The Journal of Geometric Analysis, 2020, 30 : 2852 - 2864
  • [33] Hardy Spaces Associated with Monge–Ampère Equation
    Yongshen Han
    Ming-Yi Lee
    Chin-Cheng Lin
    The Journal of Geometric Analysis, 2018, 28 : 3312 - 3347
  • [34] The Upwind Finite Volume Element Method for Two-Dimensional Burgers Equation
    Yang, Qing
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [35] Development of a two-dimensional finite element model for pure advective equation
    Sheu, TWH
    Lee, PH
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2004, 20 (02) : 302 - 326
  • [36] Expanded Mixed Finite Element Method for the Two-Dimensional Sobolev Equation
    Zhao, Qing-Li
    Li, Zong-Cheng
    Ding, You-Zheng
    JOURNAL OF APPLIED MATHEMATICS, 2013,
  • [37] Spline element method for Monge–Ampère equations
    Gerard Awanou
    BIT Numerical Mathematics, 2015, 55 : 625 - 646
  • [38] A meshfree method for solving the Monge–Ampère equation
    Klaus Böhmer
    Robert Schaback
    Numerical Algorithms, 2019, 82 : 539 - 551
  • [39] On the Monge-Ampére equation on Wiener space
    V. I. Bogachev
    A. V. Kolesnikov
    Doklady Mathematics, 2006, 73 : 1 - 5
  • [40] Regularity for the Monge-Ampère equation by doubling
    Shankar, Ravi
    Yuan, Yu
    MATHEMATISCHE ZEITSCHRIFT, 2024, 307 (02)