Parametric reduced-order modeling of once-through steam generator via double proper orthogonal decomposition

被引:0
|
作者
Xu, Yifan [1 ]
Peng, Minjun [1 ]
Xia, Genglei [1 ]
Zeng, Xiaobo [1 ]
机构
[1] Harbin Engn Univ, Coll Nucl Sci & Technol, Harbin 150001, Heilongjiang, Peoples R China
关键词
Double Proper Orthogonal Decomposition; Model Order Reduction; Proper Orthogonal Decomposition; Once-Through Steam Generator; RELAP5; JET; SIMULATION; REDUCTION;
D O I
10.1016/j.nucengdes.2024.113627
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Mastering thermal-hydraulic characteristics of the once-through steam generator (OTSG) is essential for ensuring the stable operation and safety of reactors. While refined simulation models offer relatively accurate predictions for OTSG thermal-hydraulic research, the high computational cost often limits their applicability in system online- monitoring and real-time control. Specifically, the computational burden of these models can be prohibitive for multi-query simulation tasks such as optimization design and uncertainty analysis. Model order reduction (MOR) provides a solution that meets the need for both precision and speed in nuclear reactor system. Proper orthogonal decomposition (POD), as one of the representative MOR methods, has been widely used in reactor-related research, but the data-driven reduced order model (ROM) shows poor robustness when applied to situations that deviate from the modeling conditions. Therefore, a parametric ROM suitable for estimating the thermal and hydraulic characteristics of OTSG is established in this work by introducing double POD (DPOD). The model is verified based on the full-order model (FOM) developed in the RELAP5 code. Verification results demonstrate that the maximum relative error between the ROM estimations and FOM data is less than 0.5%, while the computational time of the ROM is less than 0.1 s. This parametric ROM thus satisfies the requirements for efficient and accurate estimation of OTSG thermal-hydraulic characteristics, providing a viable alternative to refined simulation models for multi-query simulation tasks and supporting for nuclear digital twins.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Reduced-Order Modeling for Complex Flow Emulation by Common Kernel-Smoothed Proper Orthogonal Decomposition
    Chang, Yu-Hung
    Wang, Xingjian
    Zhang, Liwei
    Li, Yixing
    Mak, Simon
    Wu, Chien-Fu J.
    Yang, Vigor
    AIAA JOURNAL, 2021, 59 (09) : 3291 - 3303
  • [32] Reduced-Order Modeling of Advection-Dominated Kinetic Plasma Problems by Shifted Proper Orthogonal Decomposition
    Nicolini, Julio L.
    Teixeira, Fernando L.
    IEEE TRANSACTIONS ON PLASMA SCIENCE, 2021, 49 (11) : 3689 - 3699
  • [33] Reduced-order model development using proper orthogonal decomposition and Volterra theory
    Lucia, DJ
    Beran, PS
    AIAA JOURNAL, 2004, 42 (06) : 1181 - 1190
  • [34] An efficient proper orthogonal decomposition based reduced-order model for compressible flows
    Krath, Elizabeth H.
    Carpenter, Forrest L.
    Cizmas, Paul G. A.
    Johnston, David A.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 426 (426)
  • [35] A reduced-order approach for optimal control of fluids using proper orthogonal decomposition
    Ravindran, SS
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2000, 34 (05) : 425 - 448
  • [36] Control of the Burgers equation by a reduced-order approach using proper orthogonal decomposition
    Kunisch, K
    Volkwein, S
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1999, 102 (02) : 345 - 371
  • [37] Bayesian proper orthogonal decomposition for learnable reduced-order models with uncertainty quantification
    Boluki S.
    Dadaneh S.Z.
    Dougherty E.R.
    Qian X.
    IEEE Transactions on Artificial Intelligence, 2024, 5 (03): : 1162 - 1173
  • [38] Proper Orthogonal Decomposition for Reduced-Order Thermal Solution in Hypersonic Aerothermoelastic Simulations
    Falkiewicz, Nathan J.
    Cesnik, Carlos E. S.
    AIAA JOURNAL, 2011, 49 (05) : 994 - 1009
  • [39] Reduced-order optimal control of water flooding using proper orthogonal decomposition
    van Doren, Jorn F. M.
    Markovinovic, Renato
    Jansen, Jan-Dirk
    COMPUTATIONAL GEOSCIENCES, 2006, 10 (01) : 137 - 158
  • [40] Reduced-order optimal control of water flooding using proper orthogonal decomposition
    Jorn F. M. van Doren
    Renato Markovinović
    Jan-Dirk Jansen
    Computational Geosciences, 2006, 10 : 137 - 158