SEHGN: Semantic-Enhanced Heterogeneous Graph Network for Web API Recommendation

被引:0
|
作者
Wang, Xuanye [1 ]
Xi, Meng [1 ,2 ]
Li, Ying [2 ,3 ]
Pan, Xiaohua [2 ,3 ]
Wu, Yangyang [1 ,2 ]
Deng, Shuiguang [2 ,3 ]
Yin, Jianwei [2 ,3 ]
机构
[1] Zhejiang Univ, Sch Software Technol, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Coll Comp Sci & Technol, Hangzhou 310027, Peoples R China
[3] Zhejiang Univ, Binjiang Inst, Hangzhou 310027, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Mashups; Semantics; Application programming interfaces; Biological system modeling; Vectors; Ecosystems; Computational modeling; Web API recommendation; mashup creation; heterogeneous network; multi-semantic enhance; semantic embedding;
D O I
10.1109/TSC.2024.3417323
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
With the growth of cloud computing, a large number of innovative mashup applications and Web APIs have emerged on the Internet. The expansion of technology and information presents a significant challenge to the discovery of Web APIs from multiple service ecosystems. Various Web API recommendation methods have been proposed for Mashup creation, but most either treat different feature factor interactions equally or solely rely on requirements for API recommendation. These approaches face several challenges such as API compatibility dependencies, ambiguous definition and boundary dilemmas of APIs, and sparse API invocation records. In this work, we propose a Semantic-Enhanced Heterogeneous Graph Network(SEHGN) for Mashup creation. To address the above deficiencies, we design a multi-semantic aggregator to capture semantic associations between features to encode multiple node-edge relationships. Then, we introduce a semantic embedding component to generate text embedding vectors for mashups and APIs to learn global and local semantic information about text documents at different levels of abstraction. Finally, we fuse the output vectors to obtain a list of candidate Web APIs. Experiences are performed on real datasets, and statistical results show that SEHGN outperforms state-of-the-art models in terms of overall and long-tail Web API recommendations.
引用
收藏
页码:2836 / 2849
页数:14
相关论文
共 50 条
  • [31] A Novel Semantic-Enhanced Text Graph Representation Learning Approach through Transformer Paradigm
    Vo, Tham
    CYBERNETICS AND SYSTEMS, 2023, 54 (04) : 499 - 525
  • [32] MASER: Multi-Order Attention and Semantic-Enhanced Representation Model for Complex Text Recommendation
    Lai, Pei-Yuan
    Dai, Qing-Yun
    Liao, De-Zhang
    Yang, Zhe-Rui
    Liao, Xiao-Dong
    Wang, Chang-Dong
    Chen, Min
    IEEE TRANSACTIONS ON EMERGING TOPICS IN COMPUTATIONAL INTELLIGENCE, 2024,
  • [33] A Semantic-Enhanced Distributed Architecture for Providing and Consuming Web Services using DPWS
    Khouja, Mehdi
    Juiz, Carlos
    Puigjaner, Ramon
    Kamoun, Farouk
    JOURNAL OF INFORMATION ASSURANCE AND SECURITY, 2012, 7 (06): : 316 - 323
  • [34] Web Service Recommendation via Combining Topic-Aware Heterogeneous Graph Representation and Interactive Semantic Enhancement
    Cao, Buqing
    Peng, Qian
    Xie, Xiang
    Peng, Zhenlian
    Liu, Jianxun
    Zheng, Zibin
    IEEE TRANSACTIONS ON SERVICES COMPUTING, 2024, 17 (06) : 4451 - 4466
  • [35] A novel semantic-enhanced generative adversarial network for abstractive text summarization
    Tham Vo
    Soft Computing, 2023, 27 : 6267 - 6280
  • [36] Graph Neural Network Based Collaborative Filtering for API Usage Recommendation
    Ling, Chunyang
    Zou, Yanzhen
    Xie, Bing
    2021 IEEE INTERNATIONAL CONFERENCE ON SOFTWARE ANALYSIS, EVOLUTION AND REENGINEERING (SANER 2021), 2021, : 36 - 47
  • [37] Multimodal heterogeneous graph convolutional network for image recommendation
    Weiyi Wei
    Jian Wang
    Mengyu Xu
    Futong Zhang
    Multimedia Systems, 2023, 29 : 2747 - 2760
  • [38] Adversarial Heterogeneous Graph Neural Network for Robust Recommendation
    Sang, Lei
    Xu, Min
    Qian, Shengsheng
    Wu, Xindong
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2023, 10 (05) : 2660 - 2671
  • [39] A heterogeneous graph neural network model for list recommendation
    Yang, Wenchuan
    Li, Jichao
    Tan, Suoyi
    Tan, Yuejin
    Lu, Xin
    KNOWLEDGE-BASED SYSTEMS, 2023, 277
  • [40] Multimodal heterogeneous graph convolutional network for image recommendation
    Wei, Weiyi
    Wang, Jian
    Xu, Mengyu
    Zhang, Futong
    MULTIMEDIA SYSTEMS, 2023, 29 (5) : 2747 - 2760