Multiple disease prediction using Machine learning algorithms

被引:43
|
作者
Arumugam K. [1 ]
Naved M. [2 ]
Shinde P.P. [3 ]
Leiva-Chauca O. [4 ]
Huaman-Osorio A. [5 ]
Gonzales-Yanac T. [4 ]
机构
[1] Department of Computer Science, Karpagam Academy of Higher Education, Tamilnadu, Coimbatore
[2] Department of Business Analytics, Jagannath University, Delhi-NCR
[3] Master of Computer Application Department, Government College of Engineering, Maharashtra, Karad
[4] Administration and Tourism Faculty, Universidad Nacional Santiago Antúnez de Mayolo, Huaraz
[5] Economics and Accounting Faculty, Universidad Nacional Santiago Antúnez de Mayolo, Huaraz
来源
关键词
Accuracy; Classification; Data mining; Decision tree; Machine learning; Naïve bayes; Prediction; Support vector machine;
D O I
10.1016/j.matpr.2021.07.361
中图分类号
学科分类号
摘要
Data mining for healthcare is an interdisciplinary field of study that originated in database statistics and is useful in examining the effectiveness of medical therapies. Machine learning and data visualization Diabetes-related heart disease is a kind of heart disease that affects diabetics. Diabetes is a chronic condition that occurs when the pancreas fails to produce enough insulin or when the body fails to properly use the insulin that is produced. Heart disease, often known as cardiovascular disease, refers to a set of conditions that affect the heart or blood vessels. Despite the fact that various data mining classification algorithms exist for predicting heart disease, there is inadequate data for predicting heart disease in a diabetic individual. Because the decision tree model consistently beat the naive Bayes and support vector machine models, we fine-tuned it for best performance in forecasting the likelihood of heart disease in diabetes individuals. © 2021
引用
收藏
页码:3682 / 3685
页数:3
相关论文
共 50 条
  • [11] An Effective Disease Prediction Algorithms Using Machine Learning Techniques
    Sirivanth, Paladugu
    Rao, N. V. Krishna
    Manduva, Jenvith
    Thirupathi, J.
    Kavya, S. P., V
    Tejaswini, M.
    Sruthi, K. Sai
    PROCEEDINGS OF THE 2021 FIFTH INTERNATIONAL CONFERENCE ON I-SMAC (IOT IN SOCIAL, MOBILE, ANALYTICS AND CLOUD) (I-SMAC 2021), 2021, : 502 - 507
  • [12] An Intelligent Disease Prediction and Drug Recommendation Prototype by Using Multiple Approaches of Machine Learning Algorithms
    Nayak, Suvendu Kumar
    Garanayak, Mamata
    Swain, Sangram Keshari
    Panda, Sandeep Kumar
    Godavarthi, Deepthi
    IEEE ACCESS, 2023, 11 : 99304 - 99318
  • [13] Prediction of Cardiac Disease using Supervised Machine Learning Algorithms
    Princy, R. Jane Preetha
    Parthasarathy, Saravanan
    Jose, P. Subha Hency
    Lakshminarayanan, Arun Raj
    Jeganathan, Selvaprabu
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS 2020), 2020, : 570 - 575
  • [14] A comprehensive review for chronic disease prediction using machine learning algorithms
    Rakibul Islam
    Azrin Sultana
    Mohammad Rashedul Islam
    Journal of Electrical Systems and Information Technology, 11 (1)
  • [15] Automated Prediction of Liver Disease using Machine Learning (ML) Algorithms
    Srivastava, Aviral
    Kumar, V. Vineeth
    Mahesh, T. R.
    Vivek, V.
    2022 SECOND INTERNATIONAL CONFERENCE ON ADVANCES IN ELECTRICAL, COMPUTING, COMMUNICATION AND SUSTAINABLE TECHNOLOGIES (ICAECT), 2022,
  • [16] Prediction of Coronary Heart Disease using Supervised Machine Learning Algorithms
    Krishnani, Divya
    Kumari, Anjali
    Dewangan, Akash
    Singh, Aditya
    Naik, Nenavath Srinivas
    PROCEEDINGS OF THE 2019 IEEE REGION 10 CONFERENCE (TENCON 2019): TECHNOLOGY, KNOWLEDGE, AND SOCIETY, 2019, : 367 - 372
  • [17] A novel approach for cardiovascular disease prediction using machine learning algorithms
    Arunachalam, Saran Kumar
    Rekha, Rajagopal
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2022, 34 (19):
  • [18] Diabetes Prediction using Machine Learning Algorithms
    Mujumdar, Aishwarya
    Vaidehi, V.
    2ND INTERNATIONAL CONFERENCE ON RECENT TRENDS IN ADVANCED COMPUTING ICRTAC -DISRUP - TIV INNOVATION , 2019, 2019, 165 : 292 - 299
  • [19] Stock Prediction Using Machine Learning Algorithms
    Kohli, Pahul Preet Singh
    Zargar, Seerat
    Arora, Shriya
    Gupta, Parimal
    APPLICATIONS OF ARTIFICIAL INTELLIGENCE TECHNIQUES IN ENGINEERING, SIGMA 2018, VOL 1, 2019, 698 : 405 - 414
  • [20] ECG data analysis and heart disease prediction using machine learning algorithms
    Thithi, Sushimita Roy
    Akfar, Afifa
    Aleem, Fahimul
    Chakrabarty, Amitabha
    PROCEEDINGS OF 2019 IEEE REGION 10 SYMPOSIUM (TENSYMP), 2019, : 819 - 824