Minimal-gain-printed silicon nanolaser

被引:0
|
作者
Park, Byoung Jun [1 ]
Kim, Min-Woo [2 ]
Park, Kyong-Tae [2 ]
Kim, Hwi-Min [1 ,3 ]
You, Byeong Uk [1 ]
Yu, Aran [1 ]
Kim, Jin Tae [4 ]
No, You-Shin [2 ]
Kim, Myung-Ki [1 ,5 ,6 ]
机构
[1] Korea Univ, KU KIST Grad Sch Converging Sci & Technol, Seoul 02841, South Korea
[2] Konkuk Univ, Dept Phys, Seoul 05029, South Korea
[3] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[4] Elect & Telecommun Res Inst ETRI, Quantum Technol Res Dept, Daejeon 34129, South Korea
[5] Korea Inst Sci & Technol KIST, Ctr Quantum Informat, Seoul 02792, South Korea
[6] Korea Univ, Coll Engn, Dept Integrat Energy Engn, Seoul 02841, South Korea
来源
SCIENCE ADVANCES | 2024年 / 10卷 / 38期
基金
新加坡国家研究基金会;
关键词
LASER; INTEGRATION; PHOTONICS; EMISSION; CHIP; INP;
D O I
10.1126/sciadv.adl1548
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
While there have been notable advancements in Si-based optical integration, achieving compact and efficient continuous-wave (CW) III-V semiconductor nanolasers on Si at room temperature remains a substantial challenge. This study presents an innovative approach: the on-demand minimal-gain-printed Si nanolaser. By using a carefully designed minimal III-V optical gain structure and a precise on-demand gain-printing technique, we achieve lasing operation with superior spectral stability under pulsed conditions and observe a strong signature of CW operation at room temperature. These achievements are attributed to addressing both fundamental and technological issues, including carrier diffusion, absorption loss, and inefficient thermal dissipation, through minimal-gain printing in the nanolaser. Moreover, our demonstration of the laser-on-waveguide structure emphasizes the integration benefits of this on-demand gain-printed Si nanolaser, highlighting its potential significance in the fields of Si photonics and photonic integrated circuits.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] A Novel Implantable Printed Dipole with Improved Gain
    Haridim, M.
    Keren, O.
    Amitt, A.
    Azadmehr, M.
    2017 11TH EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION (EUCAP), 2017,
  • [32] High-gain printed dipole antenna
    Liu, YT
    Tseng, TC
    Wong, KL
    MICROWAVE AND OPTICAL TECHNOLOGY LETTERS, 2005, 46 (03) : 214 - 218
  • [33] A HIGH GAIN SILICON PHOTODETECTOR
    ING, SW
    GERHARD, GC
    PROCEEDINGS OF THE INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS, 1965, 53 (11): : 1714 - &
  • [34] Optical gain in silicon nanocrystals
    Dal Negro, L
    Pavesi, L
    Pucker, G
    Franzò, G
    Priolo, F
    OPTICAL MATERIALS, 2001, 17 (1-2) : 41 - 44
  • [35] Optical gain in silicon nanocrystals
    Pavesi, L
    Dal Negro, L
    Mazzoleni, C
    Franzò, G
    Priolo, F
    NATURE, 2000, 408 (6811) : 440 - 444
  • [36] Gain Stabilization of Silicon Photomultipliers
    Cvach, J.
    Eigen, G.
    Kvasnicka, J.
    Polak, I.
    Traeet, A.
    Zalieckas, J.
    2017 IEEE NUCLEAR SCIENCE SYMPOSIUM AND MEDICAL IMAGING CONFERENCE (NSS/MIC), 2017,
  • [37] Optical gain in silicon nanocrystals
    Pavesi, L
    Dal Negro, L
    Cazzanelli, M
    Pucker, G
    Gaburro, Z
    Prakash, G
    Franzò, G
    Priolo, F
    SILICON-BASED AND HYBRID OPTOELECTRONICS III, 2001, 4293 : 162 - 172
  • [38] 3D printed PEEK/silicon nitride scaffolds with triply periodic minimal surface structure for spinal implants
    Du, Xiaoyu
    Ronayne, Sean
    Lee, Seunghun
    Hendry, Jackson
    Hoxworth, Doug
    Bock, Ryan
    Ferguson, Stephen
    TISSUE ENGINEERING PART A, 2022, 28 : 209 - 209
  • [39] Optical gain in silicon nanocrystals
    L. Pavesi
    L. Dal Negro
    C. Mazzoleni
    G. Franzò
    F. Priolo
    Nature, 2000, 408 : 440 - 444
  • [40] Optical gain in silicon and the quest for a silicon injection laser*
    Pavesi, L
    OPTICAL INTERCONNECTS: THE SILICON APPROACH, 2006, : 15 - 32