Minimal-gain-printed silicon nanolaser

被引:0
|
作者
Park, Byoung Jun [1 ]
Kim, Min-Woo [2 ]
Park, Kyong-Tae [2 ]
Kim, Hwi-Min [1 ,3 ]
You, Byeong Uk [1 ]
Yu, Aran [1 ]
Kim, Jin Tae [4 ]
No, You-Shin [2 ]
Kim, Myung-Ki [1 ,5 ,6 ]
机构
[1] Korea Univ, KU KIST Grad Sch Converging Sci & Technol, Seoul 02841, South Korea
[2] Konkuk Univ, Dept Phys, Seoul 05029, South Korea
[3] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[4] Elect & Telecommun Res Inst ETRI, Quantum Technol Res Dept, Daejeon 34129, South Korea
[5] Korea Inst Sci & Technol KIST, Ctr Quantum Informat, Seoul 02792, South Korea
[6] Korea Univ, Coll Engn, Dept Integrat Energy Engn, Seoul 02841, South Korea
来源
SCIENCE ADVANCES | 2024年 / 10卷 / 38期
基金
新加坡国家研究基金会;
关键词
LASER; INTEGRATION; PHOTONICS; EMISSION; CHIP; INP;
D O I
10.1126/sciadv.adl1548
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
While there have been notable advancements in Si-based optical integration, achieving compact and efficient continuous-wave (CW) III-V semiconductor nanolasers on Si at room temperature remains a substantial challenge. This study presents an innovative approach: the on-demand minimal-gain-printed Si nanolaser. By using a carefully designed minimal III-V optical gain structure and a precise on-demand gain-printing technique, we achieve lasing operation with superior spectral stability under pulsed conditions and observe a strong signature of CW operation at room temperature. These achievements are attributed to addressing both fundamental and technological issues, including carrier diffusion, absorption loss, and inefficient thermal dissipation, through minimal-gain printing in the nanolaser. Moreover, our demonstration of the laser-on-waveguide structure emphasizes the integration benefits of this on-demand gain-printed Si nanolaser, highlighting its potential significance in the fields of Si photonics and photonic integrated circuits.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Printed Nanolaser on Silicon
    Lee, Jungmin
    Karnadi, Indra
    Kim, Jin Tae
    Lee, Yong-Hee
    Kim, Myung-Ki
    ACS PHOTONICS, 2017, 4 (09): : 2117 - 2123
  • [2] Nanolaser on Silicon
    Lee, Jungmin
    Lee, Yong-Hee
    Kim, Myung-Ki
    2018 INTERNATIONAL CONFERENCE ON OPTICAL MEMS AND NANOPHOTONICS (OMN), 2018, : 215 - 216
  • [3] Loss and gain in a plasmonic nanolaser
    Wang, Shao-Lei
    Wang, Suo
    Man, Xing-Kun
    Ma, Ren-Min
    NANOPHOTONICS, 2020, 9 (10) : 3403 - 3408
  • [4] A novel metamaterial gain-waveguide nanolaser
    Awad, Ehab
    OPTICS AND LASER TECHNOLOGY, 2021, 142
  • [5] A novel metamaterial gain-waveguide nanolaser
    Awad, Ehab
    Optics and Laser Technology, 2021, 142
  • [6] Nanolaser uses atomically thin gain medium
    不详
    PHOTONICS SPECTRA, 2015, 49 (06) : 35 - 36
  • [7] Ultrahigh Gain from Plasmonic Quantum Dot Nanolaser
    Jabir, Jamal N.
    Ameen, S. M. M.
    Al-Khursan, Amin H.
    1ST INTERNATIONAL SCIENTIFIC CONFERENCE ON PURE SCIENCE (ISCPS2019), 2019, 1234
  • [8] Polytypic InP Nanolaser Monolithically Integrated on (001) Silicon
    Wang, Zhechao
    Tian, Bin
    Paladugu, Mohanchand
    Pantouvaki, Marianna
    Le Thomas, Nicolas
    Merckling, Clement
    Guo, Weiming
    Dekoster, Johan
    Van Campenhout, Joris
    Absil, Philippe
    Van Thourhout, Dries
    NANO LETTERS, 2013, 13 (11) : 5063 - 5069
  • [9] Hybrid III-V semiconductor/silicon nanolaser
    Halioua, Y.
    Bazin, A.
    Monnier, P.
    Karle, T. J.
    Roelkens, G.
    Sagnes, I.
    Raj, R.
    Raineri, F.
    OPTICS EXPRESS, 2011, 19 (10): : 9221 - 9231
  • [10] Hybrid indium phosphide-on-silicon nanolaser diode
    Crosnier, Guillaume
    Sanchez, Dorian
    Bouchoule, Sophie
    Monnier, Paul
    Beaudoin, Gregoire
    Sagnes, Isabelle
    Raj, Rama
    Raineri, Fabrice
    NATURE PHOTONICS, 2017, 11 (05) : 297 - +