Machine-learning-assisted prediction of the size of microgels prepared by aqueous precipitation polymerization

被引:1
|
作者
Suzuki, Daisuke [1 ,2 ]
Minato, Haruka [1 ,2 ]
Sato, Yuji [1 ,2 ]
Namioka, Ryuji [2 ]
Igarashi, Yasuhiko [3 ]
Shibata, Risako [4 ]
Oaki, Yuya [4 ]
机构
[1] Okayama Univ, Grad Sch Environm Life Nat Sci & Technol, 3-1-1 Tsushimanaka,Kita Ku, Okayama 7008530, Japan
[2] Shinshu Univ, Grad Sch Text Sci & Technol, 3-15-1 Tokida, Ueda, Nagano 3868567, Japan
[3] Univ Tsukuba, Fac Engn Informat & Syst, 1-1-1 Tennodai, Tsukuba 3058573, Japan
[4] Keio Univ, Fac Sci & Technol, Dept Appl Chem, 3-14-1 Hiyoshi,Kohoku Ku, Yokohama 2238522, Japan
基金
日本学术振兴会; 日本科学技术振兴机构;
关键词
HYDROGEL MICROSPHERES; PARTICLES;
D O I
10.1039/d4cc04386c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The size of soft colloids (microgels) is essential; however, control over their size has typically been established empirically. Herein, we report a linear-regression model that can predict microgel size using a machine learning method, sparse modeling for small data, which enables the determination of the synthesis conditions for target-sized microgels. We report a linear-regression model that can predict microgel size using a machine learning method, sparse modeling for small data.
引用
收藏
页码:13678 / 13681
页数:5
相关论文
共 50 条
  • [21] Machine-Learning-Assisted Antenna Optimization With Data Augmentation
    Zhang, Jiapeng
    Xu, Jiawen
    Chen, Qiang
    Li, Hui
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2023, 22 (08): : 1932 - 1936
  • [22] Immune landscape-based machine-learning-assisted subclassification, prognosis, and immunotherapy prediction for glioblastoma
    Li, Haiyan
    He, Jian
    Li, Menglong
    Li, Kun
    Pu, Xuemei
    Guo, Yanzhi
    FRONTIERS IN IMMUNOLOGY, 2022, 13
  • [23] Machine-Learning-Assisted Intelligent Processing and Optimization of Complex Systems
    Luo, Xiong
    Yuan, Manman
    PROCESSES, 2023, 11 (09)
  • [24] Machine-learning-assisted materials discovery using failed experiments
    Paul Raccuglia
    Katherine C. Elbert
    Philip D. F. Adler
    Casey Falk
    Malia B. Wenny
    Aurelio Mollo
    Matthias Zeller
    Sorelle A. Friedler
    Joshua Schrier
    Alexander J. Norquist
    Nature, 2016, 533 : 73 - 76
  • [25] Machine-Learning-Assisted Characterization of Regional Heat Islands with a Spatial Extent Larger than the Urban Size
    Du, Yin
    Xie, Zhiqing
    Zhang, Lingling
    Wang, Ning
    Wang, Min
    Hu, Jingwen
    REMOTE SENSING, 2024, 16 (03)
  • [26] Machine-Learning-Assisted Recognition on Bioinspired Soft Sensor Arrays
    Luo, Yang
    Xiao, Xiao
    Chen, Jun
    Li, Qian
    Fu, Hongyan
    ACS NANO, 2022, 16 (04) : 6734 - 6743
  • [27] A Novel Algebraic Stress Model with Machine-Learning-Assisted Parameterization
    Jiang, Chao
    Mi, Junyi
    Laima, Shujin
    Li, Hui
    ENERGIES, 2020, 13 (01)
  • [28] Machine-learning-assisted low dielectric constant polymer discovery†
    Liang, Jiechun
    Xu, Shangqian
    Hu, Linfeng
    Zhao, Yu
    Zhu, Xi
    MATERIALS CHEMISTRY FRONTIERS, 2021, 5 (10) : 3823 - 3829
  • [29] Retrospective machine-learning-assisted analysis of the immune infiltrate in osteosarcoma
    Stupnicki, A. D.
    Oyesola, S.
    Ryan, L.
    Butters, T.
    Flanagan, A.
    JOURNAL OF PATHOLOGY, 2024, 264 : S36 - S36
  • [30] Machine-Learning-Assisted Construction of Ternary Convex Hull Diagrams
    Rossignol, Hugo
    Minotakis, Michail
    Cobelli, Matteo
    Sanvito, Stefano
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2024, 64 (06) : 1828 - 1840