The Polar Stratosphere of Jupiter

被引:1
|
作者
Hue, V. [1 ]
Cavalie, T. [2 ,3 ]
Sinclair, J. A. [4 ]
Zhang, X. [5 ]
Benmahi, B. [6 ]
Rodriguez-Ovalle, P. [3 ]
Giles, R. S. [7 ]
Stallard, T. S. [8 ]
Johnson, R. E. [9 ]
Dobrijevic, M. [2 ]
Fouchet, T. [3 ]
Greathouse, T. K. [7 ]
Grodent, D. C. [6 ]
Hueso, R. [10 ]
Mousis, O. [1 ]
Nixon, C. A. [11 ]
机构
[1] Aix Marseille Univ, Inst Origines, LAM, CNES, Marseille, France
[2] Univ Bordeaux, Lab Astrophys Bordeaux, CNRS, B18N,Allee Geoffroy St Hilaire, F-33615 Pessac, France
[3] Univ Paris, Univ PSL, Univ Paris Cite, LESIA,Observ Paris,CNRS, 5 Pl Jules Janssen, F-92195 Meudon, France
[4] CALTECH, Jet Prop Lab, 4800 Oak Grove Dr, Pasadena, CA 91109 USA
[5] Univ Calif Santa Cruz, Dept Earth & Planetary Sci, Santa Cruz, CA 95064 USA
[6] Univ Liege, STAR Inst, Lab Planetary & Atmospher Phys, Liege, Belgium
[7] Southwest Res Inst, Space Sci & Engn Div, San Antonio, TX USA
[8] Northumbria Univ, Dept Math Phys & Elect Engn, Newcastle Upon Tyne, England
[9] Prifysgol Aberystwyth Univ, Dept Phys, Ceredigion SY23 3BZ, Wales
[10] Univ Basque Country, Escuela Ingn Bilbao, UPV EHU, Bilbao, Spain
[11] NASA Goddard Space Flight Ctr, Solar Syst Explorat Div, Greenbelt, MD 20771 USA
关键词
JOVIAN AURORAL STRATOSPHERE; SHOEMAKER-LEVY; 9; UPPER-ATMOSPHERE; CARBON-MONOXIDE; MERIDIONAL VARIATIONS; SATURNS STRATOSPHERE; WATER-VAPOR; VERTICAL DISTRIBUTIONS; INFRARED OBSERVATIONS; CIRS/CASSINI LIMB;
D O I
10.1007/s11214-024-01119-5
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Observations of the Jovian upper atmosphere at high latitudes in the UV, IR and mm/sub-mm all indicate that the chemical distributions and thermal structure are broadly influenced by auroral particle precipitations. Mid-IR and UV observations have shown that several light hydrocarbons (up to 6 carbon atoms) have altered abundances near Jupiter's main auroral ovals. Ion-neutral reactions influence the hydrocarbon chemistry, with light hydrocarbons produced in the upper stratosphere, and heavier hydrocarbons as well as aerosols produced in the lower stratosphere. One consequence of the magnetosphere-ionosphere coupling is the existence of ionospheric jets that propagate into the neutral middle stratosphere, likely acting as a dynamical barrier to the aurora-produced species. As the ionospheric jets and the background atmosphere do not co-rotate at the same rate, this creates a complex system where chemistry and dynamics are intertwined. The ion-neutral reactions produce species with a spatial distribution following the SIII longitude system in the upper stratosphere. As these species sediment down to the lower stratosphere, and because of the progressive dynamical decoupling between the ionospheric flows and the background atmosphere, the spatial distribution of the auroral-related species progressively follows a zonal distribution with increasing pressures that ultimately produces a system of polar and subpolar hazes that extends down to the bottom of the stratosphere. This paper reviews the most recent work addressing different aspects of this environment.
引用
收藏
页数:46
相关论文
共 50 条
  • [21] Observation of water vapor in the stratosphere of Jupiter with the Odin space telescope
    Cavalie, T.
    Billebaud, F.
    Biver, N.
    Dobrijevic, M.
    Lellouch, E.
    Brillet, J.
    Lecacheux, A.
    Hjalmarson, A.
    Sandqvist, Aa.
    Frisk, U.
    Olberg, M.
    Bergin, E. A.
    PLANETARY AND SPACE SCIENCE, 2008, 56 (12) : 1573 - 1584
  • [22] Photochemistry, mixing and transport in Jupiter's stratosphere constrained by Cassini
    Hue, V.
    Hersant, E.
    Cavalie, T.
    Dobrijevic, M.
    Sinclair, J. A.
    ICARUS, 2018, 307 : 106 - 123
  • [23] The Effects of Waves on the Meridional Thermal Structure of Jupiter's Stratosphere
    Cosentino, Richard G.
    Greathouse, Thomas
    Simon, Amy
    Giles, Rohini
    Morales-Juberias, Raul
    Fletcher, Leigh N.
    Orton, Glenn
    PLANETARY SCIENCE JOURNAL, 2020, 1 (03):
  • [24] First direct measurement of auroral and equatorial jets in the stratosphere of Jupiter
    Cavalie, T.
    Benmahi, B.
    Hue, V.
    Moreno, R.
    Lellouch, E.
    Fouchet, T.
    Hartogh, P.
    Rezac, L.
    Greathouse, T. K.
    Gladstone, G. R.
    Sinclair, J. A.
    Dobrijevic, M.
    Billebaud, F.
    Jarchow, C.
    ASTRONOMY & ASTROPHYSICS, 2021, 647 (647)
  • [25] Temperature variability in the upper polar stratosphere depending on the polar vortex strength
    Zuev, Vladimir V.
    Zueva, Nina E.
    Savelieva, Ekaterina S.
    Pavlinskiy, Alexey, V
    26TH INTERNATIONAL SYMPOSIUM ON ATMOSPHERIC AND OCEAN OPTICS, ATMOSPHERIC PHYSICS, 2020, 11560
  • [26] THE IMPACT OF POLAR STRATOSPHERIC CLOUDS ON THE HEATING RATES OF THE WINTER POLAR STRATOSPHERE
    POLLACK, JB
    MCKAY, CP
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 1985, 42 (03) : 245 - 262
  • [27] The Polar Stratosphere as an Arbiter of the Projected Tropical Versus Polar Tug of War
    Peings, Yannick
    Cattiaux, Julien
    Magnusdottir, Gudrun
    GEOPHYSICAL RESEARCH LETTERS, 2019, 46 (15) : 9261 - 9270
  • [28] Satellite observation of dehydration in the Arctic Polar stratosphere
    Pan, LL
    Randel, WJ
    Nakajima, H
    Massie, ST
    Kanzawa, H
    Sasano, Y
    Yokota, T
    Sugita, T
    Hayashida, S
    Oshchepkov, S
    GEOPHYSICAL RESEARCH LETTERS, 2002, 29 (08)
  • [29] Simple measures of ozone depletion in the polar stratosphere
    Mueller, R.
    Grooss, J. U.
    Lemmen, C.
    Heinze, D.
    Dameris, M.
    Bodeker, G.
    ATMOSPHERIC CHEMISTRY AND PHYSICS, 2008, 8 (02) : 251 - 264
  • [30] THE POTENTIAL FOR OZONE DEPLETION IN THE ARCTIC POLAR STRATOSPHERE
    BRUNE, WH
    ANDERSON, JG
    TOOHEY, DW
    FAHEY, DW
    KAWA, SR
    JONES, RL
    MCKENNA, DS
    POOLE, LR
    SCIENCE, 1991, 252 (5010) : 1260 - 1266