Community detection in blockchain social networks

被引:0
|
作者
Wu, Sissi Xiaoxiao [1 ,2 ]
Wu, Zixian [1 ]
Chen, Shihui [1 ]
Li, Gangqiang [1 ]
Zhang, Shengli [1 ]
机构
[1] College of Electronics and Information Engineering, Shenzhen University, Shenzhen,518060, China
[2] Peng Cheng Laboratory, Shenzhen,518060, China
关键词
Blockchain;
D O I
暂无
中图分类号
学科分类号
摘要
In this work, we consider community detection in blockchain networks. We specifically take the Bitcoin network and Ethereum network as two examples, where community detection serves in different ways. For the Bitcoin network, we modify the traditional community detection method and apply it to the transaction social network to cluster users with similar characteristics. For the Ethereum network, on the other hand, we define a bipartite social graph based on the smart contract transactions. A novel community detection algorithm which is designed for low-rank signals on graph can help find users’ communities based on user-token subscription. Based on these results, two strategies are devised to deliver on-chain advertisements to those users in the same community. We implement the proposed algorithms on real data. By adopting the modified clustering al-gorithm, the community results in the Bitcoin network are basically consistent with the ground-truth of the betting site community which has been announced to the public. Meanwhile, we run the proposed strategy on real Ethereum data, visualize the results and implement an advertisement delivery on the Ropsten test net. © 2021, Posts and Telecom Press Co Ltd. All rights reserved.
引用
收藏
页码:59 / 71
相关论文
共 50 条
  • [31] Review on Community Detection Algorithms in Social Networks
    Wang, Cuijuan
    Tang, Wenzhong
    Sun, Bo
    Fang, Jing
    Wang, Yanyang
    PROCEEDINGS OF 2015 IEEE INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATCS AND COMPUTING (IEEE PIC), 2015, : 551 - 555
  • [32] Multiscale Local Community Detection in Social Networks
    Luo, Wenjian
    Zhang, Daofu
    Ni, Li
    Lu, Nannan
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2021, 33 (03) : 1102 - 1112
  • [33] Community Detection Metrics and Algorithms in Social Networks
    Pattanayak, Himansu Sekhar
    Verma, Harsh K.
    Sangal, A. L.
    2018 FIRST INTERNATIONAL CONFERENCE ON SECURE CYBER COMPUTING AND COMMUNICATIONS (ICSCCC 2018), 2018, : 483 - 489
  • [34] Survey on Efficient Community Detection in Social Networks
    Suryateja, G.
    Palani, Saravanan
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT SUSTAINABLE SYSTEMS (ICISS 2017), 2017, : 93 - 97
  • [35] An Overview of Community Detection Algorithms in Social Networks
    Varsha, Kulkarni
    Patil, Kiran Kumari
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON INVENTIVE COMPUTATION TECHNOLOGIES (ICICT-2020), 2020, : 121 - 126
  • [36] A Review on Community Detection Algorithms in Social Networks
    Kumar, Puneet
    Chawla, Priyanka
    Rana, Ajay
    PROCEEDINGS OF THE 2018 4TH INTERNATIONAL CONFERENCE ON APPLIED AND THEORETICAL COMPUTING AND COMMUNICATION TECHNOLOGY (ICATCCT - 2018), 2018, : 304 - 309
  • [37] Community Based Spammer Detection in Social Networks
    Liu, Dehai
    Mei, Benjin
    Chen, Jinchuan
    Lu, Zhiwu
    Du, Xiaoyong
    WEB-AGE INFORMATION MANAGEMENT (WAIM 2015), 2015, 9098 : 554 - 558
  • [38] Overlapping Community Detection for Multimedia Social Networks
    Huang, Faliang
    Li, Xuelong
    Zhang, Shichao
    Zhang, Jilian
    Chen, Jinhui
    Zhai, Zhinian
    IEEE TRANSACTIONS ON MULTIMEDIA, 2017, 19 (08) : 1881 - 1893
  • [39] Community Detection In Social Networks through Similarity Virtual Networks
    Alfalahi, Kanna
    Atif, Yacine
    Harous, Saad
    2013 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING (ASONAM), 2013, : 1116 - 1123
  • [40] Dynamically Transient Social Community Detection for Mobile Social Networks
    Bi, Xiaoyan
    Qiu, Tie
    Qu, Wenyu
    Zhao, Laiping
    Zhou, Xiaobo
    Wu, Dapeng Oliver
    IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (03) : 1282 - 1293