Ultraviolet (UV) assisted fabrication and characterization of lignin containing cellulose nanofibrils (LCNFs) from wood residues

被引:1
|
作者
Liza, Afroza Akter [1 ,2 ,3 ,4 ]
Wang, Shihao [1 ,2 ]
Zhu, Yanchen [3 ,4 ]
Wu, Hao [3 ,4 ]
Guo, Lukuan [1 ,2 ]
Qi, Yungeng [1 ,2 ,5 ]
Zhang, Fengshan [6 ]
Song, Junlong [1 ,2 ]
Ren, Hao [3 ,4 ]
Guo, Jiaqi [1 ,2 ,3 ,4 ]
机构
[1] Nanjing Forestry Univ, Jiangsu Coinnovat Ctr Efficient Proc & Utilizat Fo, Nanjing 210037, Peoples R China
[2] Nanjing Forestry Univ, Int Innovat Ctr Forest Chem & Mat, Nanjing 210037, Peoples R China
[3] Nanjing Forestry Univ, Jiangsu Prov Key Lab Sustainable Pulp & Paper Tech, Nanjing 210037, Jiangsu, Peoples R China
[4] Nanjing Forestry Univ, Coll Light Ind & Food Engn, Nanjing 210037, Jiangsu, Peoples R China
[5] Dalian Polytech Univ, Coll Light Ind & Chem Engn, Liaoning Collaborat Innovat Ctr Lignocellulos Bior, Liaoning Key Lab Lignocellulose Chem & Bio Mat, Dalian 116034, Peoples R China
[6] Shandong Huatai Paper Co Ltd, Shandong Yellow Triangle Biotechnol Ind Res Inst C, Dongying 257000, Peoples R China
基金
中国国家自然科学基金;
关键词
Wood residues; Lignin-containing cellulose nanofiber; UV illumination; Thermal stability; High yield; NANOCRYSTALS; NANOCELLULOSE;
D O I
10.1016/j.ijbiomac.2024.137973
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
This study aimed to explore the synergistic mechanism of lignin chromophore modifications via UV treatment and to analyze the effects of mechanical treatments on LCNF properties for future uses. The procedure involved two steps: first, lignin's chromophore modification via UV illumination, and then the ball milling process was proceeded for 1 h, followed by high-intensity ultrasonic for 15-135 min. Characterization included preserved lignin content percentage, FTIR, UV-vis NMR, and color analysis for UV-modified samples, and to access the influence of mechanical treatment on LCNF samples further yield, zeta potential analysis, XRD, thermogravimetric analysis, atomic force microscopy, and scanning electron microscopy were performed. LCNFs S-120 demonstrated a zeta potential of -21.7 mV, indicating enhanced stability compared to the S-135 sample (-10.95 mV). The S-120 sample also showed the highest yield (74.02 %) and TGA at 391 degrees C. In XRD analysis, the S-120 sample demonstrated the highest CrI 64.3 %, than the S-15 sample (48.2 %). Preserved lignin in the LCNFs led to a slight reduction in crystallinity across all samples but improved thermal stability for all the prepared LCNFs samples. The UV and ultrasonication improved the homogeneity and durability of the LCNF samples, enabling a process that may be used to industries.
引用
收藏
页数:12
相关论文
共 46 条
  • [21] Turning Recycled Cardboard Container-Derived Lignin-Containing Cellulose Nanofibrils into a Robust Gas Barrier UV-Shielding Film
    Tajvidi, Mehdi
    Hasan, Ikramul
    Wang, Jinwu
    Bousfield, Douglas
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2023, 11 (09) : 3720 - 3731
  • [22] Potential To Produce Sugars and Lignin-Containing Cellulose Nanofibrils from Enzymatically Hydrolyzed Chemi-Thermomechanical Pulps
    Han, Xushen
    Bi, Ran
    Oguzlu, Hale
    Takada, Masatsugu
    Jiang, Jungang
    Jiang, Feng
    Bao, Jie
    Saddler, Jack N.
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (39) : 14955 - 14963
  • [23] Facile preparation of lignin-containing cellulose nanofibrils from sugarcane bagasse by mild soda-oxygen pulping
    Yao, Lu
    Hu, Songnan
    Wang, Xijun
    Lin, Minsheng
    Zhang, Cunzhi
    Chen, Yian
    Yue, Fengxia
    Qi, Haisong
    CARBOHYDRATE POLYMERS, 2022, 290
  • [24] A facile, low-thermal, and environmentally friendly method to improve the properties of lignin-containing cellulose nanocrystals (LCNCs) and cellulose nanofibrils (LCNFs) from bagasse unbleached soda pulp (oct, 10.1007/s13399-023-05027-6, 2023)
    Ghahramani, Saleh
    Hedjazi, Sahab
    Izadyar, Soheila
    Fischer, Steffen
    Abdulkhani, Ali
    BIOMASS CONVERSION AND BIOREFINERY, 2024, : 31077 - 31077
  • [25] Simultaneous preparation of lignin-containing cellulose nanocrystals and lignin nanoparticles from wood sawdust by mixed organic acid hydrolysis
    Qi, Junjie
    Wang, Hui
    Zhang, Meng
    Xu, Ting
    Wang, Xuan
    Zhang, Han
    Du, Haishun
    Hu, Jinguang
    Liu, Kefeng
    Si, Chuanling
    INDUSTRIAL CROPS AND PRODUCTS, 2024, 222
  • [26] Pretreatment of lignin-containing cellulose micro/nano-fibrils (LCMNF) from corncob residues
    Jiaqian Luo
    Yanqun Su
    Jinghuan Chen
    Xiaohan Wang
    Jingang Liu
    Cellulose, 2021, 28 : 4671 - 4684
  • [27] Tailored production of lignin-containing cellulose nanofibrils from sugarcane bagasse pretreated by acid-catalyzed alcohol solutions
    Liu, Yiting
    Li, Wen
    Li, Kai
    Annamalai, Pratheep Kumar
    Pratt, Steven
    Hassanpour, Morteza
    Lu, Haiqin
    Zhang, Zhanying
    CARBOHYDRATE POLYMERS, 2022, 291
  • [28] High-Lignin-Containing Cellulose Nanofibrils from Date Palm Waste Produced by Hydrothermal Treatment in the Presence of Maleic Acid
    Najahi, Amira
    Tarres, Quim
    Delgado-Aguilar, Marc
    Putaux, Jean-Luc
    Boufi, Sami
    BIOMACROMOLECULES, 2023, 24 (08) : 3872 - 3886
  • [29] Pretreatment of lignin-containing cellulose micro/nano-fibrils (LCMNF) from corncob residues
    Luo, Jiaqian
    Su, Yanqun
    Chen, Jinghuan
    Wang, Xiaohan
    Liu, Jingang
    CELLULOSE, 2021, 28 (08) : 4671 - 4684
  • [30] Fabrication of bacterial cellulose thin films self-assembled from sonochemically prepared nanofibrils and its characterization
    Tsalagkas, Dimitrios
    Lagana, Rastislav
    Poljansek, Ida
    Oven, Primoz
    Csoka, Levente
    ULTRASONICS SONOCHEMISTRY, 2016, 28 : 136 - 143