Energy management with adaptive moving average filter and deep deterministic policy gradient reinforcement learning for fuel cell hybrid electric vehicles

被引:3
|
作者
Zhao, Yinghua [1 ]
Huang, Siqi [1 ]
Wang, Xiaoyu [1 ]
Shi, Jingwu [1 ]
Yao, Shouwen [1 ]
机构
[1] Beijing Inst Technol, Sch Mech Engn, 5 Zhongguancun South St, Beijing 100081, Peoples R China
关键词
Fuel cell electric vehicle; Hybrid power system; Adaptive moving average filter; Deep deterministic policy gradient; Energy management strategy; CONTROL STRATEGY; BATTERY; OPTIMIZATION; MINIMIZATION; ALGORITHM; LIFE;
D O I
10.1016/j.energy.2024.133395
中图分类号
O414.1 [热力学];
学科分类号
摘要
Fuel cell hybrid electric vehicles (FCHEV) with battery (BAT) and supercapacitor (SC) advance in flexible configuration and high energy efficiency. However, the complex coupling relationship among various power sources poses a severe challenge to the design of the energy management system (EMS), including multi-degrees of freedom power allocation, fuel economy, and power sources lifespan of the FCHEV. This paper proposes an EMS based on a dual-layer power distribution structure. In the upper layer, adaptive moving average filter (AMAF) is designed to separate different frequency power, where the energy supply of the SC is managed to attenuate fluctuating power and simplifies the optimization problem and reduces computational costs. The lower layer is constructed by the deep deterministic policy gradient (DDPG) algorithm, where fuel cell system (FCS) hydrogen consumption and degradation rewards are designed to simultaneously enhance fuel efficiency and degradation performance by regulating the FCS real-time power variation. The proposed strategy has been evaluated regarding FCHEV fuel economy and FCS durability under combined driving cycle simulation, which shows AMAF + DDPG strategy reduces fuel consumption by 7.24 % and 1.3 %, also the degradation reduces by 0.04 % and 0.02 % compared with different EMS. Simulation results demonstrate that AMAF + DDPG optimizes the output characteristics of power sources.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Energy management strategy of fuel cell vehicles with hybrid energy sources: A novel framework via deep reinforcement learning and transfer learning
    Zhou, Jianhao
    Guo, Aijun
    Wang, Jie
    Wang, Chunyan
    Zhao, Wanzhong
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART D-JOURNAL OF AUTOMOBILE ENGINEERING, 2024, 238 (14) : 4659 - 4675
  • [22] A Deep Reinforcement Learning Framework for Optimizing Fuel Economy of Hybrid Electric Vehicles
    Zhao, Pu
    Wang, Yanzhi
    Chang, Naehyuck
    Zhu, Qi
    Lin, Xue
    2018 23RD ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE (ASP-DAC), 2018, : 196 - 202
  • [23] Deep reinforcement learning based energy management strategy for range extend fuel cell hybrid electric vehicle
    Huang, Yin
    Hu, Haoqin
    Tan, Jiaqi
    Lu, Chenlei
    Xuan, Dongji
    ENERGY CONVERSION AND MANAGEMENT, 2023, 277
  • [24] Deep reinforcement learning and fuzzy logic controller codesign for energy management of hydrogen fuel cell powered electric vehicles
    Rostami, Seyed Mehdi Rakhtala
    Al-Shibaany, Zeyad
    Kay, Peter
    Karimi, Hamid Reza
    SCIENTIFIC REPORTS, 2024, 14 (01):
  • [25] A deep reinforcement learning approach to energy management control with connected information for hybrid electric vehicles
    Mei, Peng
    Karimi, Hamid Reza
    Xie, Hehui
    Chen, Fei
    Huang, Cong
    Yang, Shichun
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 123
  • [26] Energy management of hybrid electric vehicles based on model predictive control and deep reinforcement learning
    Zhang, Chunmei
    Cul, Wei
    Du, Yi
    Li, Tao
    Cui, Naxin
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 5441 - 5446
  • [27] A knowledge-assisted deep reinforcement learning approach for energy management in hybrid electric vehicles
    Zare, Aramchehr
    Boroushaki, Mehrdad
    ENERGY, 2024, 313
  • [28] Deep reinforcement learning-based energy management of hybrid battery systems in electric vehicles
    Li, Weihan
    Cui, Han
    Nemeth, Thomas
    Jansen, Jonathan
    Uenluebayir, Cem
    Wei, Zhongbao
    Zhang, Lei
    Wang, Zhenpo
    Ruan, Jiageng
    Dai, Haifeng
    Wei, Xuezhe
    Sauer, Dirk Uwe
    JOURNAL OF ENERGY STORAGE, 2021, 36
  • [29] Integrated Thermal and Energy Management of Connected Hybrid Electric Vehicles Using Deep Reinforcement Learning
    Zhang, Hao
    Chen, Boli
    Lei, Nuo
    Li, Bingbing
    Li, Rulong
    Wang, Zhi
    IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2024, 10 (02): : 4594 - 4603
  • [30] A collaborative energy management strategy based on multi-agent reinforcement learning for fuel cell hybrid electric vehicles
    Xiao, Yao
    Fu, Shengxiang
    Choi, Jongwoo
    Zheng, Chunhua
    2023 IEEE 98TH VEHICULAR TECHNOLOGY CONFERENCE, VTC2023-FALL, 2023,