Deep Learning-based Knowledge Graph and Digital Twin Relationship Mining and Prediction Modeling

被引:0
|
作者
He F. [1 ]
Bai W. [2 ,3 ]
Wang Z. [4 ]
机构
[1] School of Public Security Information Technology and Intelligence, Criminal Investigation Police University of China, Liaoning, Shenyang
[2] Intelligent Policing Key Laboratory of Sichuan Province, Sichuan, Luzhou
[3] Department of Transportation Management, Sichuan Police College, Sichuan, Luzhou
[4] School of Investigation and Counter-Terrorism, Criminal Investigation Police University of China, Liaoning, Shenyang
关键词
Attention mechanism; Deep learning; Digital twin technology; Knowledge graph; TransE model;
D O I
10.2478/amns-2024-1618
中图分类号
学科分类号
摘要
The era of big data produces massive data, and carrying out data mining can effectively obtain effective information in huge data, which provides support for efficient decision-making and intelligent optimization. The purpose of this paper is to establish a digital twin system, preprocess massive data using random matrix theory, and design the knowledge graph construction process based on digital twin technology. The BERT model, attention mechanism, BiLSTM model, and conditional random field of the joint deep learning technology are used to identify the knowledge entities in the digital twin system, extract the knowledge relations through the Transformer model, and utilize the TransE model for the knowledge representation in order to construct the knowledge graph. Then, the constructed knowledge graph is combined with the multi-feature attention mechanism to build an anomaly data prediction model in the digital twin system. Finally, the effectiveness of the methods in this paper is validated through corresponding experiments. The TransE model is used for knowledge representation. The accuracy of ternary classification is higher than 80% in all cases, and the MR value decreases by up to 64 compared to the TransR model. The F1 composite score of the anomaly data prediction model is 0.911, and the AUC value of the validation of knowledge graph effectiveness is 0.702. Combining deep learning with the knowledge graph, the knowledge information can be realized in the digital twin system's accurate representation and enhance the data mining ability of the digital twin system. © 2024 Fangzhou He, published by Sciendo.
引用
收藏
相关论文
共 50 条
  • [31] Deep learning-based digital volume correlation
    Duan, Xiaocen
    Huang, Jianyong
    EXTREME MECHANICS LETTERS, 2022, 53
  • [32] A graph-based knowledge representation and pattern mining supporting the Digital Twin creation of existing manufacturing systems
    Braun, Dominik
    Mueller, Timo
    Sahlab, Nada
    Jazdi, Nasser
    Schloegl, Wolfgang
    Weyrich, Michael
    2022 IEEE 27TH INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA), 2022,
  • [33] Deep Learning-Based Attribute Graph Clustering: An Overview
    Li, Jimei
    Zeng, Faqiang
    Cheng, Jieren
    Li, Yaoyu
    Feng, Xinran
    BIG DATA AND SECURITY, ICBDS 2023, PT I, 2024, 2099 : 211 - 224
  • [34] Deep learning-based relation extraction and knowledge graph-based representation of construction safety requirements
    Wang, Xiyu
    El-Gohary, Nora
    AUTOMATION IN CONSTRUCTION, 2023, 147
  • [35] Deep Learning-Based Conformal Prediction of Toxicity
    Zhang, Jin
    Norinder, Ulf
    Svensson, Fredrik
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2021, 61 (06) : 2648 - 2657
  • [36] Deep learning-based dose prediction for INTRABEAM
    Abushawish, Mojahed
    Galapon, Arthur V.
    Herraiz, Joaquin L.
    Udias, Jose M.
    Ibanez, Paula
    RADIOTHERAPY AND ONCOLOGY, 2024, 194 : S4472 - S4474
  • [37] Deep learning-based prediction of TFBSs in plants
    Shen, Wei
    Pan, Jian
    Wang, Guanjie
    Li, Xiaozheng
    TRENDS IN PLANT SCIENCE, 2021, 26 (12) : 1301 - 1302
  • [38] Deep learning-based location prediction in VANET
    Rezazadeh, Nafiseh
    Amirabadi, Mohammad Ali
    Kahaei, Mohammad Hossein
    IET INTELLIGENT TRANSPORT SYSTEMS, 2024, 18 (09) : 1574 - 1587
  • [39] Deep learning-based prediction of proteincarbohydrate interfaces
    Gheeraert, A.
    Lin, R. Leon Foun
    Bailly, T.
    Ren, Y.
    Vander Meersche, Y.
    Cretin, G.
    Gelly, J.
    Galochkina, T.
    FEBS OPEN BIO, 2024, 14 : 94 - 94
  • [40] Deep Learning-Based Wave Overtopping Prediction
    Alvarellos, Alberto
    Figuero, Andres
    Rodriguez-Yanez, Santiago
    Sande, Jose
    Pena, Enrique
    Rosa-Santos, Paulo
    Rabunal, Juan
    APPLIED SCIENCES-BASEL, 2024, 14 (06):