A metamaterial broadband absorber by tuning single graphene material for various terahertz domain applications

被引:3
|
作者
Prasad, Nagandla [1 ]
Madhav, Boddapati Taraka Phani [2 ]
Murugan, Neelaveni Ammal [3 ]
Das, Sudipta [4 ]
Altameem, Torki [5 ]
El-Shafai, Walid [6 ]
机构
[1] GMR Inst Technol, Dept Elect & Commun Engn, Rajam 532127, Andhra Pradesh, India
[2] Koneru Lakshmaiah Educ Fdn, Dept Elect & Commun Engn, ALRC R&D, Vijayawada, AP, India
[3] SRM Inst Sci & Technol, Dept Elect & Commun Engn, Kattankulathur 603203, Tamil Nadu, India
[4] IMPS Coll Engn & Technol, Dept Elect & Commun Engn, Malda, W Bengal, India
[5] King Saud Univ, Community Coll, Comp Sci Dept, Riyadh 95, Saudi Arabia
[6] Menoufia Univ, Fac Elect Engn, Dept Elect & Elect Commun Engn, Menoufia 32952, Egypt
关键词
Absorber; Broadband; Graphene; Metamaterial; Silicon; Terahertz; WIDE-ANGLE; METASURFACE; ABSORPTION; DESIGN;
D O I
10.1016/j.diamond.2024.111705
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A broadband metamaterial-based absorber (MTMA) with a broad absorptance response is proposed in this research article, which contains a straightforward structure with three layers namely lossy silicon functioning as a dielectric medium, copper as a bottom conductive layer, and finally graphene-based top layer as a radiating patch. The geometry of the MTMA consists of an octagon-shaped patch surrounded by a rectangular strip-connected square-type ring. The lossy silicon is the dielectric material, with a thickness (d) of 4 mu m. The ground (bottom) conductive layer is of copper having 0.1 mu m thickness (tg) and a conductivity (sigma) of 5.9 x 10(7) s/m. At a temperature of 300 degrees Kelvin, graphene material with a thickness of 1 nm is used for the proposed absorber. Moreover, it possesses a polarization-insensitive (PIS) nature. A broad spectrum with >90 % absorptance is obtained by fixing the graphene material's chemical potential to 0.7 eV (eV) and the relaxation time to 0.1 ps. The design of MTMA possesses straightforward construction without having multiple dielectric or conductive layers. It provides an excellent absorptance near unity (99 %) over the operating frequency range with a compact size of 2.5 x 2.5 x 4 mu m(3). It achieves an absorptance bandwidth of 3.26 THz within the terahertz domain covering a broad spectrum from 8.20 to 11.46 THz. The structure produces the same absorptance bandwidth irrespective of changes in polarization angle. Additionally, the proposed configuration is validated using an equivalent electrical circuit (ECC) model with the help of the ADS tool. The exclusive behavior of the propounded absorber in the terahertz band points to possible applications in various terahertz-based devices for spectroscopy, energy harvesting, high-speed wireless communications, food processing, detection, imaging, and sensing, etc.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Planar broadband terahertz metamaterial absorber using single nested resonator
    Wen, Yongzheng
    Ma, Wei
    Bailey, Joe
    Matmon, Guy
    Yu, Xiaomei
    Aeppli, Gabriel
    2014 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2014,
  • [22] A broadband metamaterial absorber based on multi-layer graphene in the terahertz region
    Fu, Pan
    Liu, Fei
    Ren, Guang Jun
    Su, Fei
    Li, Dong
    Yao, Jian Quan
    OPTICS COMMUNICATIONS, 2018, 417 : 62 - 66
  • [23] A high-quality broadband tunable terahertz metamaterial absorber based on graphene
    Chao, Xiongying
    Xu, Yan
    Huang, Feng
    Chen, Zhaoyang
    JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2024, 57 (07)
  • [24] Patterned-graphene-based broadband tunable metamaterial absorber in terahertz band
    Du, Xuemei
    Yan, Fengping
    Wang, Wei
    Zhang, Luna
    Bai, Zhuoya
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2020,
  • [25] Design of a Broadband Tunable Terahertz Metamaterial Absorber Based on Complementary Structural Graphene
    Huang, Mu Lin
    Cheng, Yong Zhi
    Cheng, Zheng Ze
    Chen, Hao Ran
    Mao, Xue Song
    Gong, Rong Zhou
    MATERIALS, 2018, 11 (04):
  • [26] Graphene-based polarization insensitive ultrathin broadband terahertz absorber for material sensing applications
    Maurya, Vikram
    Singhal, Sarthak
    PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS, 2023, 57
  • [27] Broadband terahertz metamaterial absorber: design and fabrication
    Qiu, Yanqing
    Wang, Jinfeng
    Xiao, Meiyu
    Lang, Tingting
    APPLIED OPTICS, 2021, 60 (32) : 10055 - 10061
  • [28] Polarization insensitive, broadband terahertz metamaterial absorber
    Grant, James
    Ma, Yong
    Saha, Shimul
    Khalid, Ata
    Cumming, David R. S.
    OPTICS LETTERS, 2011, 36 (17) : 3476 - 3478
  • [29] Novel dynamic tuning of broadband visible metamaterial perfect absorber using graphene
    Jia, Xiuli
    Wang, Xiaoou
    Yuan, Chengxun
    Meng, Qingxin
    Zhou, Zhongxiang
    JOURNAL OF APPLIED PHYSICS, 2016, 120 (03)
  • [30] Ultra-broadband terahertz metamaterial absorber
    Zhu, Jianfei
    Ma, Zhaofeng
    Sun, Wujiong
    Ding, Fei
    He, Qiong
    Zhou, Lei
    Ma, Yungui
    APPLIED PHYSICS LETTERS, 2014, 105 (02)