A novel fine-grained assembly sequence planning method based on knowledge graph and deep reinforcement learning

被引:0
|
作者
Jiang, Mingjie [1 ]
Guo, Yu [1 ]
Huang, Shaohua [1 ]
Pu, Jun [1 ]
Zhang, Litong [1 ]
Wang, Shengbo [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Mech & Elect Engn, Nanjing, Peoples R China
关键词
Assembly sequence planning (ASP); Quantitative knowledge; Knowledge graph (KG); Deep reinforcement learning; Degree centrality algorithm;
D O I
10.1016/j.jmsy.2024.08.001
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In the assembly sequence planning (ASP) of aviation products, recalibration of components or sufficient space to assemble subsequent components are critical factors for ensuring product quality. To address this need, a finegrained ASP (FASP) is defined to take assembly operations as units to plan sequences. Lots of operations have complex sequence constraints that are attended unequally in the FASP. A method based on knowledge graph (KG) and deep reinforcement learning is proposed to plan assembly operations. Firstly, continuous and discrete procedures are defined, and a quantitative characterization method is presented to deduce complex constraints objectively. Then, a dynamic KG is designed to establish and update the information model mainly composed of constraints. Finally, a labeled degree centrality algorithm (LDCA) considers edge labels to minimize the number of assembly tool changes and assembly direction changes for sequences. An improved deep Q-network (IDQN) introduces a convolutional layer to extract local features of technical requirements for planning procedures more efficiently. A helicopter structure assembly is used to verify the effectiveness of the proposed method. The improved algorithms have better performance in solving speed, sequence quality, and convergence speed than ordinary ASP methods, respectively. The fine-grained assembly sequence is more reasonable and feasible by comparing it with the ordinary sequence.
引用
收藏
页码:371 / 384
页数:14
相关论文
共 50 条
  • [41] DEEP DICTIONARY LEARNING FOR FINE-GRAINED IMAGE CLASSIFICATION
    Srinivas, M.
    Lin, Yen-Yu
    Liao, Hong-Yuan Mark
    2017 24TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2017, : 835 - 839
  • [42] Learning Deep Representations of Fine-Grained Visual Descriptions
    Reed, Scott
    Akata, Zeynep
    Lee, Honglak
    Schiele, Bernt
    2016 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2016, : 49 - 58
  • [43] Interpreting Fine-Grained Dermatological Classification by Deep Learning
    Mishra, Sourav
    Imaizumi, Hideaki
    Yamasaki, Toshihiko
    2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW 2019), 2019, : 2729 - 2737
  • [44] Learning Fine-grained Image Similarity with Deep Ranking
    Wang, Jiang
    Song, Yang
    Leung, Thomas
    Rosenberg, Chuck
    Wang, Jingbin
    Philbin, James
    Chen, Bo
    Wu, Ying
    2014 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2014, : 1386 - 1393
  • [45] DGTRL: Deep graph transfer reinforcement learning method based on fusion of knowledge and data
    Chen, Genxin
    Qi, Jin
    Gao, Yu
    Zhu, Xingjian
    Dong, Zhenjiang
    Sun, Yanfei
    INFORMATION SCIENCES, 2024, 658
  • [46] Adaptive Fine-Grained Predicates Learning for Scene Graph Generation
    Lyu, Xinyu
    Gao, Lianli
    Zeng, Pengpeng
    Shen, Heng Tao
    Song, Jingkuan
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (11) : 13921 - 13940
  • [47] Hierarchical Memory Learning for Fine-Grained Scene Graph Generation
    Deng, Youming
    Li, Yansheng
    Zhang, Yongjun
    Xiang, Xiang
    Wang, Jian
    Chen, Jingdong
    Ma, Jiayi
    COMPUTER VISION - ECCV 2022, PT XXVII, 2022, 13687 : 266 - 283
  • [48] Incremental Learning Method for Fine-Grained Bird Recognition Based on Prompt Learning
    Zhu, Tong
    Zhang, Haimiao
    Qiu, Jun
    LASER & OPTOELECTRONICS PROGRESS, 2024, 61 (24)
  • [49] Dynamic knowledge graph reasoning based on deep reinforcement learning
    Liu, Hao
    Zhou, Shuwang
    Chen, Changfang
    Gao, Tianlei
    Xu, Jiyong
    Shu, Minglei
    KNOWLEDGE-BASED SYSTEMS, 2022, 241
  • [50] Deep reinforcement learning applied to an assembly sequence planning problem with user preferences
    Neves, Miguel
    Neto, Pedro
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 122 (11-12): : 4235 - 4245