Automatic identification and classification of pediatric glomerulonephritis on ultrasound images based on deep learning and radiomics

被引:0
|
作者
Kou, Jun [1 ]
Li, Zuying [1 ]
You, Yazi [1 ]
Wang, Ruiqi [1 ]
Chen, Jingyu [1 ]
Tang, Yi [1 ]
机构
[1] Chongqing Med Univ, Childrens Hosp, Natl Clin Res Ctr Child Hlth & Disorders, Chongqing Key Lab Pediat Metab & Inflammatory Dis,, Chongqing 400010, Peoples R China
关键词
Glomerulonephritis; Pediatrics; Ultrasound; Deep learning; Radiomics; Classification; KIDNEY ALLOGRAFT; COMPLICATIONS; SEGMENTATION;
D O I
10.1186/s40537-024-01033-1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
BackgroundGlomerulonephritis (GN) encompasses a heterogeneous group of kidney diseases, often presenting with subclinical manifestations in children, leading to frequent missed diagnoses. Renal biopsy, while considered the gold standard, is invasive, prone to sampling errors, and time-consuming, thus hindering rapid diagnosis. This study aimed to develop a noninvasive diagnostic model for childhood GN using renal ultrasound images through the integration of deep learning and radiomics techniques.MethodsUltrasound images were acquired from children undergoing ultrasound-guided biopsy. A total of 469 renal ultrasound images were selected and divided into training and validation sets at a ratio of 8:2 to train a U-Net model for precise kidney image segmentation. Using radiomics, a comprehensive set of radiomic features were extracted from the segmented kidney regions. The extracted features were categorized based on GN types: IgA nephropathy (127 cases), minimal change disease (83 cases), and Henoch-Sch & ouml;nlein purpura nephritis (103 cases). These categories were further randomly split into training and validation sets at a ratio of 8:2. Within the training set, analysis of variance (ANOVA) was used for feature selection, followed by supervised Least Absolute Shrinkage and Selection Operator (LASSO) regression for dimensionality reduction, resulting in the selection of 37 features. These features were then integrated with a random forest algorithm to develop a GN classification model. The model's performance was comprehensively evaluated using the validation set.ResultsThe segmentation model exhibited remarkable performance during training, achieving an accuracy of 95.19% in the validation set. Thirty-seven features were identified through feature selection, leading to the development of a robust classification model. Evaluation on the validation set revealed high accuracy and predictive power across different GN categories, with Area Under the Curve (AUC) values ranging from 0.91 to 0.98.ConclusionsThe combined use of deep learning and radiomics techniques utilizing renal ultrasound images demonstrates significant potential for classifying childhood GN subtypes. This noninvasive approach holds promise for improving diagnostic efficiency and patient outcomes in GN.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Fully automatic tumor segmentation of breast ultrasound images with deep learning
    Zhang, Shuai
    Liao, Mei
    Wang, Jing
    Zhu, Yongyi
    Zhang, Yanling
    Zhang, Jian
    Zheng, Rongqin
    Lv, Linyang
    Zhu, Dejiang
    Chen, Hao
    Wang, Wei
    JOURNAL OF APPLIED CLINICAL MEDICAL PHYSICS, 2023, 24 (01):
  • [42] Deep Learning for Automatic Segmentation of Hybrid Optoacoustic Ultrasound (OPUS) Images
    Lafci, Berkan
    Mercep, Elena
    Morscher, Stefan
    Dean-Ben, Xose Luis
    Razansky, Daniel
    IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2021, 68 (03) : 688 - 696
  • [43] Differentiation of benign and malignant parotid gland tumors based on the fusion of radiomics and deep learning features on ultrasound images
    Wang, Yi
    Gao, Jiening
    Yin, Zhaolin
    Wen, Yue
    Sun, Meng
    Han, Ruoling
    FRONTIERS IN ONCOLOGY, 2024, 14
  • [44] Prediction of sentinel lymph node metastasis in breast cancer by using deep learning radiomics based on ultrasound images
    Wang, Chujun
    Zhao, Yu
    Wan, Min
    Huang, Long
    Liao, Lingmin
    Guo, Liangyun
    Zhang, Jing
    Zhang, Chun-Quan
    MEDICINE, 2023, 102 (44) : E35868
  • [45] Deep learning for identification of fasciculation from muscle ultrasound images
    Nodera, Hiroyuki
    Takamatsu, Naoko
    Yamazaki, Hiroki
    Satomi, Ryutaro
    Osaki, Yusuke
    Mori, Atsuko
    Izumi, Yuishin
    Kaji, Ryuji
    NEUROLOGY AND CLINICAL NEUROSCIENCE, 2019, 7 (05): : 267 - 275
  • [46] A lightweight hybrid model for the automatic recognition of uterine fibroid ultrasound images based on deep learning
    Cai, Peiya
    Yang, Tiantian
    Xie, Qinglai
    Liu, Peizhong
    Li, Ping
    JOURNAL OF CLINICAL ULTRASOUND, 2024, 52 (06) : 753 - 762
  • [47] Automatic Identification of Landslides Based on Deep Learning
    Yang, Shuang
    Wang, Yuzhu
    Wang, Panzhe
    Mu, Jingqin
    Jiao, Shoutao
    Zhao, Xupeng
    Wang, Zhenhua
    Wang, Kaijian
    Zhu, Yueqin
    APPLIED SCIENCES-BASEL, 2022, 12 (16):
  • [48] Automatic Identification of Conodonts Based on Deep Learning
    Ren, Yili
    Luo, Lu
    Ren, Yiting
    2019 16TH INTERNATIONAL CONFERENCE ON SERVICE SYSTEMS AND SERVICE MANAGEMENT (ICSSSM2019), 2019,
  • [49] Automatic Ultrasound Guidance Based on Deep Reinforcement Learning
    Jarosik, Piotr
    Lewandowski, Marcin
    2019 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2019, : 475 - 478
  • [50] Machine-learning-based automatic identification of fetal abdominal circumference from ultrasound images
    Kim, Bukweon
    Kim, Kang Cheol
    Park, Yejin
    Kwon, Ja-Young
    Jang, Jaeseong
    Seo, Jin Keun
    PHYSIOLOGICAL MEASUREMENT, 2018, 39 (10)