Identification of Truly High-risk Conjunction Events by Predicting Future CDM

被引:0
|
作者
Sugawara, Keisuke [1 ]
Hinagawa, Hideaki [1 ]
Akiyama, Yuki [1 ]
Nakamura, Shinichi [1 ]
Ishihama, Naoki [1 ]
机构
[1] Japan Aerospace Exploration Agency, Ibaraki, Tsukuba,305-8505, Japan
关键词
Compendex;
D O I
AIAA 2022-0862
中图分类号
学科分类号
摘要
Space debris
引用
收藏
相关论文
共 50 条
  • [41] Are there patients truly at high-risk for carotid endarterectomy or carotid stenting? Can they be identified?
    Criado, Frank J.
    Gashti, Mojtaba
    SEMINARS IN VASCULAR SURGERY, 2008, 21 (03) : 139 - 142
  • [42] IDENTIFICATION OF PATIENTS AT HIGH-RISK FOR ADVERSE CORONARY EVENTS WHILE AWAITING ROUTINE CORONARY ANGIOPLASTY
    CHESTER, M
    CHEN, LJ
    KASKI, JC
    BRITISH HEART JOURNAL, 1995, 73 (03): : 216 - 222
  • [43] Factors predicting compliance with palivizumab in high-risk infants
    Langkamp, DL
    Hlavin, SM
    AMERICAN JOURNAL OF PERINATOLOGY, 2001, 18 (06) : 345 - 352
  • [44] Deep learning for predicting future lesion emergence in high-risk breast MRI screening: a feasibility study
    Bianca Burger
    Maria Bernathova
    Philipp Seeböck
    Christian F. Singer
    Thomas H. Helbich
    Georg Langs
    European Radiology Experimental, 7
  • [45] Exercise perfusion imaging is incremental to Framingham Risk Score for predicting future coronary events in an asymptomatic high risk population
    Becker, LC
    Blumenthal, RS
    Yanek, LR
    Moy, TF
    Becker, DM
    CIRCULATION, 2001, 104 (17) : 454 - 454
  • [46] Predicting reattendance at a high-risk breast cancer clinic
    Ormseth, Sarah R.
    Wellisch, David K.
    Arechiga, Adam E.
    Draper, Taylor L.
    PALLIATIVE & SUPPORTIVE CARE, 2015, 13 (05) : 1441 - 1448
  • [47] Predicting high-risk opioid prescriptions before they are given
    Hastings, Justine S.
    Howison, Mark
    Inman, Sarah E.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (04) : 1917 - 1923
  • [48] Predicting High-Risk Students Using Learning Behavior
    Liu, Tieyuan
    Wang, Chang
    Chang, Liang
    Gu, Tianlong
    MATHEMATICS, 2022, 10 (14)
  • [49] Rockfalls: predicting high-risk behaviour from beliefs
    Aucote, Helen M.
    Miner, Anthony
    Dahlhaus, Peter
    DISASTER PREVENTION AND MANAGEMENT, 2010, 19 (01) : 20 - 31
  • [50] ENZYMES USED IN PREDICTING HIGH-RISK TO COLON CANCER
    SCHWARTZ, MK
    CLINICAL BIOCHEMISTRY, 1990, 23 (05) : 395 - 398