One-step production of peanut shell derived N, P co-doped carbon materials for high-performance symmetric supercapacitors

被引:3
|
作者
Cheng, Xiaoyang [1 ]
Zhang, Lihua [1 ]
Li, Lingyan [1 ]
Li, Xinran [1 ]
Wu, Hao [1 ]
Zheng, Jinfeng [2 ]
Yao, Jiarong [2 ]
Li, Guifang [3 ]
机构
[1] Shanxi Normal Univ, Sch Chem & Mat Sci, Key Lab Magnet Mol & Magnet Informat Mat, Minist Educ, Taiyuan 030032, Peoples R China
[2] Shanxi Datong Univ, Engn Res Ctr Coal based Ecol Carbon Sequestrat Tec, Key Lab Graphene Forestry Applicat Natl Forest & G, Minstry Educ, Datong 037009, Peoples R China
[3] Jimei Univ, Coll Marine Equipment & Mech Engn, Cleaning Combust & Energy Utilizat Res Ctr Fujian, Key Lab Energy Cleaning Utilizat,Xiamen Key Lab Ma, Xiamen 361021, Peoples R China
关键词
Peanut shell; N and P co-doped; Biomass-derived carbon; Energy storage; Supercapacitor; POROUS CARBON;
D O I
10.1016/j.colsurfa.2024.134542
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In order to realize the reuse of agricultural waste and improve the electrochemical performance of carbon materials, N and P co-doped carbon materials were prepared by using rich and cheap waste peanut shells as carbon precursors and NH4H2PO4 as N and P sources. The effects of the mass ratio of peanut shell and NH4H2PO4 on the structure, composition, morphology and electrochemical properties of carbon materials were studied in detail. The results show that when the mass ratio is 2:3, the prepared PSC-3 has the largest surface area and higher heteroatom content, which provides a structural basis for its high electrochemical performance. Electrochemical tests show that the specific capacitance of PSC-3 at 1 A g- 1 can reach 184 F g- 1 , and has excellent rate performance. When the mass ratio is higher than or below 2:3, the electrochemical performance of carbon materials will be reduced, demonstrating the feasibility of achieving the best electrochemical performance by adjusting the amount of NH4H2PO4. In addition, the symmetric supercapacitor (SSC) assembled by PSC-3 can obtain an energy density of 10.1 Wh kg- 1 , which has excellent energy storage characteristics.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] N/O co-doped microporous carbon as a high-performance electrode for supercapacitors
    Yan, Jing-jing
    Fang, Xiao-hao
    Yao, De-zhou
    Zhu, Cheng-wei
    Shi, Jian-jun
    Qian, Shan-shan
    NEW CARBON MATERIALS, 2025, 40 (01) : 231 - 242
  • [22] 3D hierarchical porous N, O co-doped carbon derived from the waste walnut shell via one-step carbonization for high-performance supercapacitor
    Liu, Zhentao
    Li, Linsong
    Wang, Meilong
    Wu, Fuzhong
    Jin, Huixin
    Wang, Yi
    ELECTROANALYSIS, 2024, 36 (07)
  • [23] N/P co-doped hierarchical porous carbon materials for superior performance supercapacitors
    Chen, Jing
    Wei, Huanming
    Chen, Haijun
    Yao, Wenhao
    Lin, Hualin
    Han, Sheng
    ELECTROCHIMICA ACTA, 2018, 271 : 49 - 57
  • [24] From weed to N/O/S co-doped honeycomb-like porous carbon for high-performance supercapacitors: a facile and friendly one-step carbonization
    Bian, Zhentao
    Li, Meng
    Liu, Taoqin
    Liu, Chengcheng
    Zhu, Yanyan
    Cao, Hongxia
    Zhu, Guang
    Wang, Hongyan
    Chen, Chong
    Zhang, Keying
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 965
  • [25] N, P co-doped microporous carbon derived from the central part of corn cob for high-performance symmetrical supercapacitors
    Zhang, Lihua
    Li, Xinran
    Li, Lingyan
    Cheng, Xiaoyang
    Wu, Hao
    Zheng, Jinfeng
    JOURNAL OF ENERGY STORAGE, 2024, 96
  • [26] Defect engineering of hollow porous N, S co-doped carbon spheres-derived materials for high-performance hybrid supercapacitors
    Ji, Zhenyuan
    Tang, Guanxiang
    Chen, Lizhi
    Zhong, Jiali
    Chen, Yao
    Zhu, Guoxing
    Chuan, Xinghang
    Zhang, Jingchuang
    Shen, Xiaoping
    CHEMICAL ENGINEERING JOURNAL, 2024, 480
  • [27] B/N co-doped carbon nanosphere frameworks as high-performance electrodes for supercapacitors
    Hao, Jian
    Wang, Jiemin
    Qin, Si
    Liu, Dan
    Li, Yinwei
    Lei, Weiwei
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (17) : 8053 - 8058
  • [28] One-step production of N, S co-doped honeycomb-like activated carbon from instant dry yeast for high gravimetric and volumetric performance supercapacitors
    Shao, Jiacan
    Zhu, Guang
    Xie, Li
    Tao, Shuaikang
    Zhang, Ying
    Zhang, Jinhua
    Wang, Hongyan
    Zhang, Li
    Chen, Chong
    DIAMOND AND RELATED MATERIALS, 2022, 127
  • [29] Scalable one-step synthesis of N,S co-doped graphene-enhanced hierarchical porous carbon foam for high-performance solid-state supercapacitors
    Ma, Liya
    Liu, Jin
    Lv, Song
    Zhou, Qin
    Shen, Xinyu
    Mo, Shaobo
    Tong, Hua
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (13) : 7591 - 7603
  • [30] Facile and controllable synthesis of N/P co-doped graphene for high-performance supercapacitors
    Xia, Kaisheng
    Huang, Zhiyuan
    Zheng, Lin
    Han, Bo
    Gao, Qiang
    Zhou, Chenggang
    Wang, Hongquan
    Wu, Jinping
    JOURNAL OF POWER SOURCES, 2017, 365 : 380 - 388