Fault Diagnosis in Electrical Machines for Traction Applications: Current Trends and Challenges

被引:0
|
作者
Pastura, Marco [1 ]
Zigliotto, Mauro [1 ]
机构
[1] Univ Padua, Dept Engn & Management DTG, I-36100 Vicenza, Italy
关键词
fault detection; review; electric vehicle; traction application; condition monitoring; machine learning; permanent magnet machines; induction machines; multi-phase machines; OPEN-CIRCUIT FAULTS; OPEN-SWITCH FAULT; INDUCTION-MOTOR; DEMAGNETIZATION FAULT; WAVELET TRANSFORM; INTERTURN FAULTS; TURN FAULTS; ROTOR FAULT; STATOR; ECCENTRICITY;
D O I
10.3390/en17215440
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The widespread diffusion of electric vehicles poses new challenges in the field of fault diagnostics. Past studies have been focused mainly on machines designed for industrial applications, where the operating conditions and requirements are significantly different. This work presents a review of the most recent studies about fault diagnosis techniques in electrical machines feasible for traction applications, with a focus on the most adopted approaches of the last years and on the latest trends. Considerations about their applicability for electric vehicle purposes, along with some areas that require further research, are also provided.
引用
收藏
页数:20
相关论文
共 50 条
  • [21] Sustainable Biomaterials: Current Trends, Challenges and Applications
    Gupta, Girish Kumar
    De, Sudipta
    Franco, Ana
    Balu, Alina Mariana
    Luque, Rafael
    MOLECULES, 2016, 21 (01)
  • [22] Fusion of Vibration and Current Signatures for the Fault Diagnosis of Induction Machines
    Liu, Meng-Kun
    Minh-Quang Tran
    Weng, Peng-Yi
    SHOCK AND VIBRATION, 2019, 2019
  • [23] Support vector machines and its applications in machine fault diagnosis
    Yuan, Sheng-Fa
    Chu, Fu-Lei
    Zhendong yu Chongji/Journal of Vibration and Shock, 2007, 26 (11): : 29 - 35
  • [24] Applications of Artificial Intelligence for Fault Diagnosis of Rotating Machines: A Review
    Kibrete, Fasikaw
    Woldemichael, Dereje Engida
    ARTIFICIAL INTELLIGENCE AND DIGITALIZATION FOR SUSTAINABLE DEVELOPMENT, ICAST 2022, 2023, 455 : 41 - 62
  • [25] Nanostructural Superconducting Materials for Fault Current Limiters and Cryogenic Electrical Machines
    Prikhna, T. A.
    Gawalek, W.
    Savchuk, Ya. M.
    Sergienko, N. V.
    Moshchil, V. E.
    Sokolovsky, V.
    Vajda, J.
    Tkach, V. N.
    Karau, F.
    Weber, H.
    Eisterer, M.
    Joulain, A.
    Rabier, J.
    Chaud, X.
    Wendt, M.
    Dellith, J.
    Danilenko, N. I.
    Habisreuther, T.
    Dub, S. N.
    Meerovich, V.
    Litzkendorf, D.
    Nagorny, P. A.
    Kovalev, L. K.
    Schmidt, Ch.
    Melnikov, V. S.
    Shapovalov, A. P.
    Kozyrev, A. V.
    Sverdun, V. B.
    Kosa, J.
    Vlasenko, A. V.
    ACTA PHYSICA POLONICA A, 2010, 117 (01) : 7 - 14
  • [26] The Edge Application of Machine Learning Techniques for Fault Diagnosis in Electrical Machines
    de las Morenas, Javier
    Moya-Fernandez, Francisco
    Lopez-Gomez, Julio Alberto
    SENSORS, 2023, 23 (05)
  • [27] Fault diagnosis in electric machines and propellers for electrical propulsion aircraft: A review
    Milfont, Leonardo Duarte
    Ferreira, Gabriela Torllone de Carvalho
    Giesbrecht, Mateus
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2025, 139
  • [28] Application of Rogowski Search Coil for Stator Fault Diagnosis in Electrical Machines
    Ghanbari, Teymoor
    Farjah, Amin
    IEEE SENSORS JOURNAL, 2014, 14 (02) : 311 - 312
  • [29] Application of AI tools in fault diagnosis of electrical machines and drives - An overview
    Awadallah, MA
    Morcos, MA
    IEEE TRANSACTIONS ON ENERGY CONVERSION, 2003, 18 (02) : 245 - 251
  • [30] Custom Simplified Machine Learning Algorithms for Fault Diagnosis in Electrical Machines
    Raja, Hadi Ashraf
    Asad, Bilal
    Vaimann, Toomas
    Kallaste, Ants
    Rassolkin, Anton
    Belahcen, Anouar
    2022 INTERNATIONAL CONFERENCE ON DIAGNOSTICS IN ELECTRICAL ENGINEERING (DIAGNOSTIKA), 2022, : 38 - 41