Genome-wide association studies of ischemic stroke based on interpretable machine learning

被引:0
|
作者
Nikoli, Stefan [1 ]
Ignatov, Dmitry I. [1 ]
Khvorykh, Gennady, V [2 ]
Limborska, Svetlana A. [2 ]
Khrunin, Andrey, V [2 ]
机构
[1] HSE Univ, Lab Models & Methods Computat Pragmat, Dept Data Anal & Artificial Intelligence, Moscow, Russia
[2] Natl Res Ctr Kurchatov Inst, Moscow, Russia
基金
俄罗斯科学基金会;
关键词
Genome-wide association studies; Interpretable machine learning; Ischemic stroke; Illuminating druggable genome; XGBoost; Interpretable neural network TabNet; SNP ranking; SNP importance; OXIDATIVE STRESS; DISEASE; RISK; GENE; PROTEINS; LOCI;
D O I
10.7717/peerj-cs.2454
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Despite the identification of several dozen genetic loci associated with ischemic stroke (IS), the genetic bases of this disease remain largely unexplored. In this research we present the results of genome-wide association studies (GWAS) based on classical statistical testing and machine learning algorithms (logistic regression, gradient boosting on decision trees, and tabular deep learning model TabNet). To build a consensus on the results obtained by different techniques, the Pareto-Optimal solution was proposed and applied. These methods were applied to real genotypic data of sick and healthy individuals of European ancestry obtained from the Database of Genotypes and Phenotypes (5,581 individuals, 883,749 single nucleotide polymorphisms). Finally, 131 genes were identified as candidates for association with the onset of IS. UBQLN1, TRPS1, and MUSK were previously described as associated with the course of IS in model animals. ACOT11 taking part in metabolism of fatty acids was shown for the first time to be associated with IS. The identified genes were compared with genes from the Illuminating Druggable Genome project. The product of GPR26 representing the G-coupled protein receptor can be considered as a therapeutic target for stroke prevention. The approaches presented in this research can be used to reprocess GWAS datasets from other diseases.
引用
收藏
页数:26
相关论文
共 50 条
  • [41] Genome-Wide Association Studies and Diet
    Ferguson, Lynnette R.
    JOURNAL OF NUTRIGENETICS AND NUTRIGENOMICS, 2010, 3 (4-6) : 144 - 150
  • [42] Replication in Genome-Wide Association Studies
    Kraft, Peter
    Zeggini, Eleftheria
    Ioannidis, John P. A.
    STATISTICAL SCIENCE, 2009, 24 (04) : 561 - 573
  • [43] The road to genome-wide association studies
    Kruglyak, Leonid
    NATURE REVIEWS GENETICS, 2008, 9 (04) : 314 - 318
  • [44] Genome-wide association studies in ADHD
    Barbara Franke
    Benjamin M. Neale
    Stephen V. Faraone
    Human Genetics, 2009, 126 : 13 - 50
  • [45] Genome-Wide Association Studies of Cancer
    Stadler, Zsofia K.
    Thom, Peter
    Robson, Mark E.
    Weitzel, Jeffrey N.
    Kauff, Noah D.
    Hurley, Karen E.
    Devlin, Vincent
    Gold, Bert
    Klein, Robert J.
    Offit, Kenneth
    JOURNAL OF CLINICAL ONCOLOGY, 2010, 28 (27) : 4255 - 4267
  • [46] Genome-wide association studies in pharmacogenomics
    Daly, Ann K.
    NATURE REVIEWS GENETICS, 2010, 11 (04) : 241 - 246
  • [47] Genome-Wide Association Studies in Atherosclerosis
    S. Sivapalaratnam
    M. M. Motazacker
    S. Maiwald
    G. K. Hovingh
    J. J. P. Kastelein
    M. Levi
    M. D. Trip
    G. M. Dallinga-Thie
    Current Atherosclerosis Reports, 2011, 13 : 225 - 232
  • [48] The road to genome-wide association studies
    Leonid Kruglyak
    Nature Reviews Genetics, 2008, 9 : 314 - 318
  • [49] Genome-wide association studies in atherothrombosis
    Lotta, Luca Andrea
    EUROPEAN JOURNAL OF INTERNAL MEDICINE, 2010, 21 (02) : 74 - 78
  • [50] Genome-Wide Association Studies in Glioma
    Kinnersley, Ben
    Houlston, Richard S.
    Bondy, Melissa L.
    CANCER EPIDEMIOLOGY BIOMARKERS & PREVENTION, 2018, 27 (04) : 418 - 428