SDAC-DA: Semi-Supervised Deep Attributed Clustering Using Dual Autoencoder

被引:14
|
作者
Berahmand, Kamal [1 ]
Bahadori, Sondos [2 ]
Abadeh, Maryam Nooraei [3 ]
Li, Yuefeng [1 ]
Xu, Yue [1 ]
机构
[1] Queensland Univ Technol QUT, Fac Sci, Sch Comp Sci, Brisbane, Qld 4000, Australia
[2] Islamic Azad Univ, Dept Comp Engn, Ilam Branch, J9QJ 3Q4, Ilam, Iran
[3] Islamic Azad Univ, Dept Comp Engn, Abadan Branch, Abadan 6317836531, Iran
关键词
Vectors; Clustering algorithms; Image edge detection; Clustering methods; Transforms; Task analysis; STEM; Attributed network; deep attributed clustering; semi-supervised clustering; pairwise constraints; COMMUNITY DETECTION; GRAPH; NETWORK;
D O I
10.1109/TKDE.2024.3389049
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Attributed graph clustering aims to group nodes into disjoint categories using deep learning to represent node embeddings and has shown promising performance across various applications. However, two main challenges hinder further performance improvement. First, reliance on unsupervised methods impedes the learning of low-dimensional, clustering-specific features in the representation layer, thus impacting clustering performance. Second, the predominant use of separate approaches leads to suboptimal learned embeddings that are insufficient for subsequent clustering steps. To address these limitations, we propose a novel method called Semi-supervised Deep Attributed Clustering using Dual Autoencoder (SDAC-DA). This approach enables semi-supervised deep end-to-end clustering in attributed networks, promoting high structural cohesiveness and attribute homogeneity. SDAC-DA transforms the attribute network into a dual-view network, applies a semi-supervised autoencoder layering approach to each view, and integrates dimensionality reduction matrices by considering complementary views. The resulting representation layer contains high clustering-friendly embeddings, which are optimized through a unified end-to-end clustering process for effectively identifying clusters. Extensive experiments on both synthetic and real networks demonstrate the superiority of our proposed method over seven state-of-the-art approaches.
引用
收藏
页码:6989 / 7002
页数:14
相关论文
共 50 条
  • [21] Semi-supervised clustering methods
    Bair, Eric
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2013, 5 (05): : 349 - 361
  • [22] SEMI-SUPERVISED SPECTRAL CLUSTERING
    Mai, Xiaoyi
    Couillet, Romain
    2018 CONFERENCE RECORD OF 52ND ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2018, : 2012 - 2016
  • [23] A review on semi-supervised clustering
    Cai, Jianghui
    Hao, Jing
    Yang, Haifeng
    Zhao, Xujun
    Yang, Yuqing
    INFORMATION SCIENCES, 2023, 632 : 164 - 200
  • [24] Semi-supervised clustering with deep metric learning and graph embedding
    Xiaocui Li
    Hongzhi Yin
    Ke Zhou
    Xiaofang Zhou
    World Wide Web, 2020, 23 : 781 - 798
  • [25] Deep Triplet-Driven Semi-supervised Embedding Clustering
    Ienco, Dino
    Pensa, Ruggero G.
    DISCOVERY SCIENCE (DS 2019), 2019, 11828 : 220 - 234
  • [26] Consistency regularization for deep semi-supervised clustering with pairwise constraints
    Dan Huang
    Jie Hu
    Tianrui Li
    Shengdong Du
    Hongmei Chen
    International Journal of Machine Learning and Cybernetics, 2022, 13 : 3359 - 3372
  • [27] Semi-Supervised Clustering Algorithm Based on Deep Feature Mapping
    Xu, Xiong
    Zhou, Chun
    Wang, Chenggang
    Zhang, Xiaoyan
    Meng, Hua
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2023, 37 (01): : 815 - 831
  • [28] Semi-supervised clustering with deep metric learning and graph embedding
    Li, Xiaocui
    Yin, Hongzhi
    Zhou, Ke
    Zhou, Xiaofang
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2020, 23 (02): : 781 - 798
  • [29] Consistency regularization for deep semi-supervised clustering with pairwise constraints
    Huang, Dan
    Hu, Jie
    Li, Tianrui
    Du, Shengdong
    Chen, Hongmei
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2022, 13 (11) : 3359 - 3372
  • [30] Soft Semi-Supervised Deep Learning-Based Clustering
    Alzuhair, Mona Suliman
    Ben Ismail, Mohamed Maher
    Bchir, Ouiem
    APPLIED SCIENCES-BASEL, 2023, 13 (17):