Classical-quantum simulation of non-equilibrium Marshak waves

被引:0
|
作者
Myers, C. J. [1 ]
Gentile, Nick [2 ]
Rouillard, Hunter [1 ]
Vogt, Ryan [1 ]
Graziani, F. [2 ]
Gaitan, F. [1 ]
机构
[1] Lab Phys Sci, 8050 Greenmead Dr, College Pk, MD 20740 USA
[2] Lawrence Livermore Natl Lab, 7000 East Ave, Livermore, CA 94550 USA
基金
美国能源部;
关键词
plasma nonlinear phenomena; fusion plasma; RADIATION;
D O I
10.1017/S0022377824000977
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
In the radiation hydrodynamic simulations used to design inertial confinement fusion (ICF) and pulsed power experiments, nonlinear radiation diffusion tends to dominate CPU time. This raises the interesting question of whether a quantum algorithm can be found for nonlinear radiation diffusion which provides a quantum speedup. Recently, such a quantum algorithm was introduced based on a quantum algorithm for solving systems of nonlinear partial differential equations (PDEs) which provides a quadratic quantum speedup. Here, we apply this quantum PDE (QPDE) algorithm to the problem of a non-equilibrium Marshak wave propagating through a cold, semi-infinite, optically thick target, where the radiation and matter fields are not assumed to be in local thermodynamic equilibrium. The dynamics is governed by a coupled pair of nonlinear PDEs which are solved using the QPDE algorithm, as well as two standard PDE solvers: (i) Python's py-pde solver; and (ii) the KULL ICF simulation code developed at Lawrence-Livermore National Laboratory. We compare the simulation results obtained using the QPDE algorithm and the standard PDE solvers and find excellent agreement.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] Controlling sudden transition from classical to quantum decoherence via non-equilibrium environments
    Basit, Abdul
    Ali, Hamad
    Badshah, Fazal
    Yang, Xiao-Fei
    Ge, Guo-Qin
    NEW JOURNAL OF PHYSICS, 2020, 22 (03):
  • [32] Excitations and ergodicity of critical quantum spin chains from non-equilibrium classical dynamics
    Vinet, Stephane
    Longpre, Gabriel
    Witczak-Krempa, William
    SCIPOST PHYSICS CORE, 2022, 5 (03):
  • [33] Classical-quantum correspondence for fields
    Vachaspati, Tanmay
    Zahariade, George
    JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2019, (09):
  • [34] A non-equilibrium multiscale simulation paradigm
    Li, Shaofan
    Sheng, Ni
    Liu, Xiaohu
    CHEMICAL PHYSICS LETTERS, 2008, 451 (4-6) : 293 - 300
  • [35] Universal Classical-Quantum Superposition Coding and Universal Classical-Quantum Multiple Access Channel Coding
    Hayashi, Masahito
    Cai, Ning
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (03) : 1822 - 1850
  • [36] Implementation of Framework for Quantum-Classical and Classical-Quantum Conversion
    Nimbe, Peter
    Weyori, Benjamin Asubam
    Adekoya, Adebayo Felix
    Awarayi, Nicodemus Songose
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2022, 61 (02)
  • [37] Non-equilibrium spin waves in paramagnetic metals
    Zyuzin, A. A.
    Zyuzin, A. Yu.
    EPL, 2010, 90 (06)
  • [38] Stability of Relaxation Waves in a Non-Equilibrium Gas
    Osipov, A. I.
    Savchenkova, E. A.
    Uvarov, A. V.
    FLUID DYNAMICS, 2003, 38 (04) : 518 - 528
  • [39] Stability of Relaxation Waves in a Non-Equilibrium Gas
    A. I. Osipov
    E. A. Savchenkova
    A. V. Uvarov
    Fluid Dynamics, 2003, 38 : 518 - 528
  • [40] Hybrid Classical-Quantum Simulation of MaxCut using QAOA-in-QAOA
    Esposito, Aniello
    Danzig, Tamuz
    2024 IEEE INTERNATIONAL PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM WORKSHOPS, IPDPSW 2024, 2024, : 1088 - 1094