Ensem-DeepHAR: Identification of human activity in smart environments using ensemble of deep learning methods and motion sensor data

被引:0
|
作者
Islam, S.M. Mohidul [1 ]
Talukder, Kamrul Hasan [1 ]
机构
[1] Computer Science and Engineering Discipline, Khulna University, Khulna,9208, Bangladesh
来源
Measurement: Sensors | 2024年 / 36卷
关键词
Activity recognition - Ensem-DeepHAR - Human activities - Human activity recognition - Motion sensor data - Motion sensors - Person-independent - Preprocessing chain for human activity recognition - Sensors data - Stackings;
D O I
10.1016/j.measen.2024.101398
中图分类号
学科分类号
摘要
50
引用
收藏
相关论文
共 50 条
  • [31] Tracking changes in user activity from unlabelled smart home sensor data using unsupervised learning methods
    Prankit Gupta
    Richard McClatchey
    Praminda Caleb-Solly
    Neural Computing and Applications, 2020, 32 : 12351 - 12362
  • [32] Tracking changes in user activity from unlabelled smart home sensor data using unsupervised learning methods
    Gupta, Prankit
    McClatchey, Richard
    Caleb-Solly, Praminda
    NEURAL COMPUTING & APPLICATIONS, 2020, 32 (16): : 12351 - 12362
  • [33] Big Data-Based Smart Health Monitoring System: Using Deep Ensemble Learning
    Abidi, Mustufa Haider
    Umer, Usama
    Mian, Syed Hammad
    Al-Ahmari, Abdulrahman
    IEEE ACCESS, 2023, 11 : 114880 - 114903
  • [34] Learning Human Activity From Visual Data Using Deep Learning
    Alhersh, Taha
    Stuckenschmidt, Heiner
    Rehman, Atiq Ur
    Belhaouari, Samir Brahim
    IEEE ACCESS, 2021, 9 : 106245 - 106253
  • [35] Human Activity Recognition Using Spectrograms of Binary Motion Sensor Data
    Seyedtalebi, Nima
    Silvestri, Simone
    2024 20TH INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING IN SMART SYSTEMS AND THE INTERNET OF THINGS, DCOSS-IOT 2024, 2024, : 377 - 383
  • [36] Sensor Positioning and Data Acquisition for Activity Recognition using Deep Learning
    Chung, Seungeun
    Lim, Jiyoun
    Noh, Kyoung Ju
    Kim, Ga Gue
    Jeong, Hyun Tae
    2018 INTERNATIONAL CONFERENCE ON INFORMATION AND COMMUNICATION TECHNOLOGY CONVERGENCE (ICTC), 2018, : 154 - 159
  • [37] Human Activity Recognition using Binary Motion Image and Deep Learning
    Dobhal, Tushar
    Shitole, Vivswan
    Thomas, Gabriel
    Navada, Girisha
    SECOND INTERNATIONAL SYMPOSIUM ON COMPUTER VISION AND THE INTERNET (VISIONNET'15), 2015, 58 : 178 - 185
  • [38] UWB LOS/NLOS identification in multiple indoor environments using deep learning methods?
    Liu, Qingzhi
    Yin, Zhendong
    Zhao, Yanlong
    Wu, Zhilu
    Wu, Mingyang
    PHYSICAL COMMUNICATION, 2022, 52
  • [39] Correction to: HumanSense: a framework for collective human activity identification using heterogeneous sensor grid in multi-inhabitant smart environments
    Arindam Ghosh
    Amartya Chakraborty
    Joydeep Kumbhakar
    Mousumi Saha
    Sujoy Saha
    Personal and Ubiquitous Computing, 2022, 26 : 541 - 542
  • [40] Forensic detection of heterogeneous activity in data using deep learning methods
    Nyarko, Benedicta Nana Esi
    Bin, Wu
    Zhou, Jinzhi
    Odoom, Justice
    Danso, Samuel Akwasi
    Addai, Gyarteng Emmanuel Sarpong
    INTELLIGENT SYSTEMS WITH APPLICATIONS, 2024, 21