FRACTAL MULTIQUADRIC INTERPOLATION FUNCTIONS

被引:0
|
作者
Kumar, D. [1 ]
Chand, A. K. B. [1 ]
Massopust, P. R. [2 ]
机构
[1] Indian Inst Technol Madras, Dept Math, Chennai 600036, India
[2] Tech Univ Munich, Dept Math, D-85748 Garching, Germany
关键词
fractals; fractal interpolation functions; MQ functions; initial value problems; col location method; DIFFERENTIAL-EQUATIONS; COLLOCATION;
D O I
10.1137/23M1578917
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we impose fractal features onto classical multiquadric (MQ) functions. This generates a novel class of fractal functions, called fractal MQ functions, where the symmetry of the original MQ function with respect to the origin is maintained. This construction requires a suitable extension of the domain and similar partitions on the left side with the same choice of scaling parameters. Smooth fractal MQ functions are proposed to solve initial value problems via a collocation method. Our numerical computations suggest that fractal MQ functions offer higher accuracy and more flexibility for the solutions compared to the existing classical MQ functions. Some approximation results associated with fractal MQ functions are also presented.
引用
收藏
页码:2349 / 2369
页数:21
相关论文
共 50 条
  • [21] Affine zipper fractal interpolation functions
    Chand, A. K. B.
    Vijender, N.
    Viswanathan, P.
    Tetenov, A., V
    BIT NUMERICAL MATHEMATICS, 2020, 60 (02) : 319 - 344
  • [22] Zipper rational fractal interpolation functions
    Pasupathi, R.
    Vijay
    Chand, A. K. B.
    Upadhye, N. S.
    JOURNAL OF ANALYSIS, 2024, 32 (06): : 3197 - 3226
  • [23] Affine recurrent fractal interpolation functions
    Balasubramani, N.
    Gowrisankar, A.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2021, 230 (21-22): : 3765 - 3779
  • [24] Univariable affine fractal interpolation functions
    Drakopoulos, V.
    Vijender, N.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2021, 207 (03) : 689 - 700
  • [25] Bivariate fractal interpolation functions on grids
    Dalla, L
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2002, 10 (01) : 53 - 58
  • [27] On the integral transform of fractal interpolation functions
    Agathiyan, A.
    Gowrisankar, A.
    Fataf, Nur Aisyah Abdul
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 222 : 209 - 224
  • [28] Multifractal analysis of fractal interpolation functions
    Priyanka, T. M. C.
    Gowrisankar, A.
    PHYSICA SCRIPTA, 2024, 99 (11)
  • [29] Energy and Laplacian of fractal interpolation functions
    Li Xiao-hui
    Ruan Huo-jun
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2017, 32 (02) : 201 - 210
  • [30] SPECTRAL CONVERGENCE OF MULTIQUADRIC INTERPOLATION
    BUHMANN, M
    DYN, N
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 1993, 36 : 319 - 333