MGNR: A Multi-Granularity Neighbor Relationship and Its Application in KNN Classification and Clustering Methods

被引:3
|
作者
Xie, Jiang [1 ]
Xiang, Xuexin [1 ]
Xia, Shuyin [1 ]
Jiang, Lian [1 ]
Wang, Guoyin [1 ]
Gao, Xinbo [1 ]
机构
[1] Chongqing Univ Telecommun & Posts, Chongqing Key Lab Computat Intelligence, Chongqing 400065, Peoples R China
基金
中国国家自然科学基金;
关键词
Computational modeling; Data models; Clustering methods; Machine learning; Clustering algorithms; Classification algorithms; Task analysis; Clustering; granular-ball computing; KNN; multi-granularity; neighbor relationship; ALGORITHM;
D O I
10.1109/TPAMI.2024.3400281
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In the real world, data distributions often exhibit multiple granularities. However, the majority of existing neighbor-based machine-learning methods rely on manually setting a single-granularity for neighbor relationships. These methods typically handle each data point using a single-granularity approach, which severely affects their accuracy and efficiency. This paper adopts a dual-pronged approach: it constructs a multi-granularity representation of the data using the granular-ball computing model, thereby boosting the algorithm's time efficiency. It leverages the multi-granularity representation of the data to create tailored, multi-granularity neighborhood relationships for different task scenarios, resulting in improved algorithmic accuracy. The experimental results convincingly demonstrate that the proposed multi-granularity neighbor relationship effectively enhances KNN classification and clustering methods.
引用
收藏
页码:7956 / 7972
页数:17
相关论文
共 50 条
  • [41] Password region attribute classification based on multi-granularity cascade fusion
    Yu, Wei
    Liu, Cheng
    Ni, Lvlin
    Shi, Yu
    Ji, Qingbing
    CONNECTION SCIENCE, 2025, 37 (01)
  • [42] Multi-granularity Decomposition of Componentized Network Applications Based on Weighted Graph Clustering
    Wang, Ziliang
    Zhou, Fanqin
    Feng, Lei
    Li, Wenjing
    Zhang, Tingting
    Wang, Sheng
    Li, Ying
    JOURNAL OF WEB ENGINEERING, 2022, 21 (03): : 815 - 844
  • [43] Fault Diagnosis of Complex Industrial Systems Based on Multi-Granularity Dictionary Learning and Its Application
    Liu, Zeyi
    Wu, Dehao
    Huang, Keke
    Yang, Chunhua
    Gui, Weihua
    IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, 2024, 21 (01) : 192 - 203
  • [44] Multi-granularity Visualization of Trajectory Clusters using Sub-trajectory Clustering
    Chang, Cheng
    Zhou, Baoyao
    2009 IEEE INTERNATIONAL CONFERENCE ON DATA MINING WORKSHOPS (ICDMW 2009), 2009, : 577 - 582
  • [45] A Multi-Granularity Density Peak Clustering Algorithm Based on Variational Mode Decomposition
    GU, Ziwen
    Li, Peng
    LANG, Xun
    YU, Yixuan
    SHEN, Xin
    CAO, Min
    CHINESE JOURNAL OF ELECTRONICS, 2021, 30 (04) : 658 - 668
  • [46] Semi-Supervised Multi-Granularity CNNs for Text Classification: An Application in Human-Car Interaction
    Zhao, Fen
    Li, Yinguo
    Bai, Ling
    Tian, Zhen
    Wang, Xinheng
    IEEE ACCESS, 2020, 8 : 68000 - 68012
  • [47] Towards Better Representations for Multi-Label Text Classification with Multi-granularity Information
    Li, Fangfang
    Su, Puzhen
    Duan, Junwen
    Xiao, Weidong
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (EMNLP 2023), 2023, : 9470 - 9480
  • [48] A Multi-Granularity Density Peak Clustering Algorithm Based on Variational Mode Decomposition
    GU Ziwen
    LI Peng
    LANG Xun
    YU Yixuan
    SHEN Xin
    CAO Min
    Chinese Journal of Electronics, 2021, 30 (04) : 658 - 668
  • [49] Hierarchical Multi-Granularity Interaction Graph Convolutional Network for Long Document Classification
    Liu, Tengfei
    Hu, Yongli
    Gao, Junbin
    Sun, Yanfeng
    Yin, Baocai
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2024, 32 : 1762 - 1775
  • [50] Multiple Fault Diagnosis Methods Based on Multi-level Multi-granularity PCA
    Wu, Lan
    Su, Sheyan
    Wen, Chenglin
    2018 INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND INFORMATION SCIENCES (ICCAIS), 2018, : 566 - 570