Automatic penetration bead welding technology in horizontal position using weld pool image recognition

被引:0
|
作者
Ozaki, Keita [1 ]
Furukawa, Naohide [2 ]
Okamoto, Akira [1 ]
Ishizaki, Keito [2 ]
Kimura, Yuji [2 ]
Koike, Takeshi [2 ]
机构
[1] Technical Development Group, Kobe Steel, Ltd., Japan
[2] Welding Business, Kobe Steel, Ltd, Japan
来源
Yosetsu Gakkai Ronbunshu/Quarterly Journal of the Japan Welding Society | 2021年 / 39卷 / 04期
关键词
27;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:309 / 321
相关论文
共 50 条
  • [21] Mathematical Model for Prediction and Optimization of Weld Bead Geometry in All-Position Automatic Welding of Pipes
    Liao, Baoyi
    Shi, Yonghua
    Cui, Yanxin
    Cui, Shuwan
    Jiang, Zexin
    Yi, Yaoyong
    METALS, 2018, 8 (10)
  • [22] Study on the estimate of weld bead shape and the compensation of welding parameters by considering weld defects in horizontal fillet welding
    Kim, Gwan-hyung
    Kang, Sung-in
    Lee, Sang-bae
    International Conference on Knowledge-Based Intelligent Electronic Systems, Proceedings, KES, 1999, : 212 - 216
  • [23] Study on the estimate of weld bead shape and the compensation of welding parameters by considering weld defects in horizontal fillet welding
    Kim, Gwan-hyung
    Kang, Sung-in
    Lee, Sang-bae
    International Conference on Knowledge-Based Intelligent Electronic Systems, Proceedings, KES, : 212 - 216
  • [24] Automatic weld joint type recognition in intelligent welding using image features and machine learning algorithms
    Sonwane, Satish
    Chiddarwar, Shital
    AI EDAM-ARTIFICIAL INTELLIGENCE FOR ENGINEERING DESIGN ANALYSIS AND MANUFACTURING, 2024, 37
  • [25] Weld pool image sensor for pulsed MIG welding
    Liu, Pengfei
    Sun, Zhenguo
    Huang, Cao
    Chen, Qiang
    China Welding (English Edition), 2008, 17 (01): : 1 - 5
  • [26] Weld pool image sensor for pulsed MIG welding
    刘鹏飞
    孙振国
    黄操
    陈强
    China Welding, 2008, (01) : 1 - 5
  • [27] DEVICE FOR KEEPING WELD POOL AT TOPMOST POSITION IN AUTOMATIC SUBMERGED-ARC WELDING OF CIRCUMFERENTIAL SEAMS
    KOZULIN, MG
    WELDING PRODUCTION, 1974, 21 (07): : 83 - 84
  • [28] Collaborative and Quantitative Prediction for Reinforcement and Penetration Depth of Weld Bead Based on Molten Pool Image and Deep Residual Network
    Lu, Jun
    Shi, Yumin
    Bai, Lianfa
    Zhao, Zhuang
    Han, Jing
    IEEE ACCESS, 2020, 8 : 126138 - 126148
  • [29] Prediction of weld bead geometry and penetration in shielded metal-are welding using artificial neural networks
    Nagesh, DS
    Datta, GL
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2002, 123 (02) : 303 - 312
  • [30] Numerical simulation study of the effect of weld current on WAAM welding pool dynamic and weld bead morphology
    Fu Zichuan
    Zhou Xiangman
    Luo Bin
    Tian Qihua
    INTERNATIONAL CONFERENCE ON MECHANICAL DESIGN AND SIMULATION (MDS 2022), 2022, 12261