How do the eigenvalues of the Laplacian matrix affect route to synchronization patterns?

被引:0
|
作者
Rajagopal, Karthikeyan [1 ]
He, Shaobo [2 ]
Natiq, Hayder [3 ,4 ]
Bayani, Atiyeh [5 ]
Nazarimehr, Fahimeh [5 ]
Jafari, Sajad [5 ,6 ]
机构
[1] Chennai Inst Technol, Ctr Nonlinear Syst, Chennai, India
[2] Xiangtan Univ, Sch Automat & Elect Informat, Xiangtan 411105, Peoples R China
[3] Minist Higher Educ & Sci Res, Baghdad 10024, Iraq
[4] Imam Jaafar Al Sadiq Univ, Coll Informat Technol, Dept Comp Technol Engn, Baghdad, Iraq
[5] Tehran Polytech, Dept Biomed Engn, Amirkabir Univ Technol, Tehran, Iran
[6] Tehran Polytech, Hlth Technol Res Inst, Amirkabir Univ Technol, Tehran, Iran
关键词
Synchronization; Cluster synchronization; Laplacian matrix eigenvalues;
D O I
10.1016/j.physleta.2024.129637
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In cluster synchronization, network nodes are divided into synchronized groups before the whole network gets synchronized. This phenomenon is crucial in understanding the mechanism behind the synchronization of realworld and man-made complex networks like neuronal networks and power grids. The Laplacian matrix and its eigenvalues provide helpful information about the networks' synchronization, robustness, and controllability. Here, analyzing the relation between the Laplacian matrix eigenvalues and cluster synchronization demonstrates that the intensity of the eigenvalues has significant importance on the clusters' appearance. Results show that considering groups of equal eigenvalues yields the appearing of clusters in the network. So, this technique allows the ability to design networks with the desired number of clusters with defined cluster size. Synchronization of the clusters results in a plateau in the order parameter evolution. Furthermore, studying two different chaotic systems shows that this relationship depends on the systems' dynamics. Here, the eigenvector centrality tool is utilized to examine the existence of clusters besides the graph representation.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] How do cytokinins affect the cell?
    G. A. Romanov
    Russian Journal of Plant Physiology, 2009, 56 : 268 - 290
  • [42] How do cytokinins affect the cell?
    Romanov, G. A.
    RUSSIAN JOURNAL OF PLANT PHYSIOLOGY, 2009, 56 (02) : 268 - 290
  • [43] How does globalization affect the synchronization of business cycles?
    Kose, MA
    Prasad, ES
    Terrones, ME
    AMERICAN ECONOMIC REVIEW, 2003, 93 (02): : 57 - 62
  • [44] How extinction patterns affect ecosystems
    Raffaelli, D
    SCIENCE, 2004, 306 (5699) : 1141 - 1142
  • [45] "Two-way road": how do QDs affect the cells and how do the cells affect QDs?
    Kornilova, E. S.
    Litvinov, I. K.
    Leontieva, E. A.
    Orlova, A. O.
    Belyaeva, T. N.
    INTERNATIONAL CONFERENCE LASER OPTICS 2020 (ICLO 2020), 2020,
  • [46] Machining SiC fibre reinforced metal matrix composites - How do different matrix materials affect the cutting performance?
    Zan, Shusong
    Liao, Zhirong
    Mypati, Omkar
    Axinte, Dragos
    M'Saoubi, Rachid
    Walsh, Mark
    Robles-Linares, Jose A.
    CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2024, 73 (01) : 53 - 56
  • [47] How do TTX and AP5 affect the post-recovery neuronal network activity synchronization?
    Esposti, Federico
    Signorini, Maria Gabriella
    Lamanna, Jacopo
    Gullo, Francesca
    Wanke, Enzo
    2007 ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-16, 2007, : 3012 - 3015
  • [48] Synchronization of Identical Oscillators Under Matrix-Weighted Laplacian With Sampled Data
    Li, Shuang
    Xia, Weiguo
    Sun, Xi-Ming
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2021, 8 (01): : 102 - 113
  • [49] How do seasonal changes in adult wolf defecation patterns affect scat detection probabilities?
    Roda, Fabrice
    Poulard, Florian
    Ayache, Gaetan
    Nasi, Nadine
    D'Antuoni, Carole
    Mathieu, Roger
    Cheylan, Gilles
    JOURNAL OF VERTEBRATE BIOLOGY, 2022, 71 : 22043.1 - 12