Enhancing Graph Neural Networks via Memorized Global Information

被引:0
|
作者
Zeng, Ruihong [1 ]
Fang, Jinyuan [2 ]
Liu, Siwei [3 ]
Meng, Zaiqiao [4 ]
Liang, Shangsong [5 ]
机构
[1] Sun Yat Sen Univ, Sch Comp Sci & Engn, Guangzhou, Guangdong, Peoples R China
[2] Sun Yat Sen Univ, Guangzhou, Peoples R China
[3] Mohamed bin Zayed Univ Artificial Intelligence Mas, Dept Machine Learning, Abu Dhabi, U Arab Emirates
[4] Univ Glasgow, Glasgow City, Scotland
[5] Sun Yat Sen Univ, Sch Data & Comp Sci, Guangzhou, Peoples R China
关键词
Network embedding; graph neural network; memorized global information;
D O I
10.1145/3689430
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Graph neural networks (GNNs) have gained significant attention for their impressive results on different graph-based tasks. The essential mechanism of GNNs is the message-passing framework, whereby node representations are aggregated from local neighborhoods. Recently, Transformer-based GNNs have been introduced to learn the long-range dependencies, enhancing performance. However, their quadratic computational complexity, due to the attention computation, has constrained their applicability on large-scale graphs. To address this issue, we propose MGIGNN (Memorized G lobal I nformation G raph N eural N etwork), an innovative approach that leverages memorized global information to enhance existing GNNs in both transductive and inductive scenarios. Specifically, MGIGNN captures long-range dependencies by identifying and incorporating global similar nodes, which are defined as nodes exhibiting similar features, structural patterns and label information within a graph. To alleviate the computational overhead associated with computing embeddings for all nodes, we introduce an external memory module to facilitate the retrieval of embeddings and optimize performance on large graphs. To enhance the memory-efficiency, MGIGNN selectively retrieves global similar nodes from a small set of candidate nodes. These candidate nodes are selected from the training nodes based on a sparse node selection distribution with a Dirichlet prior. This selecting approach not only reduces the memory size required but also ensures efficient utilization of computational resources. Through comprehensive experiments conducted on ten widely-used and real-world datasets, including seven homogeneous datasets and three heterogeneous datasets, we demonstrate that our MGIGNN can generally improve the performance of existing GNNs on node classification tasks under both inductive and transductive settings.
引用
收藏
页数:34
相关论文
共 50 条
  • [41] NecroGlobalGCN: Integrating micronecrosis information in HCC prognosis prediction via graph convolutional neural networks
    Deng, Boyang
    Tian, Yu
    Zhang, Qi
    Wang, Yangyang
    Chai, Zhenxin
    Ye, Qiancheng
    Yao, Shang
    Liang, Tingbo
    Li, Jingsong
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2024, 257
  • [42] On Explainability of Graph Neural Networks via Subgraph Explorations
    Yuan, Hao
    Yu, Haiyang
    Wang, Jie
    Li, Kang
    Ji, Shuiwang
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 139, 2021, 139
  • [43] Graph partitioning via recurrent multivalued neural networks
    Mérida-Casermeiro, E
    López-Rodríguez, D
    COMPUTATIONAL INTELLIGENCE AND BIOINSPIRED SYSTEMS, PROCEEDINGS, 2005, 3512 : 1149 - 1156
  • [44] Streaming Graph Neural Networks via Generative Replay
    Wang, Junshan
    Zhu, Wenhao
    Song, Guojie
    Wang, Liang
    PROCEEDINGS OF THE 28TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2022, 2022, : 1878 - 1888
  • [45] Streaming Graph Neural Networks via Continual Learning
    Wang, Junshan
    Song, Guojie
    Wu, Yi
    Wang, Liang
    CIKM '20: PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, 2020, : 1515 - 1524
  • [46] Robust Graph Neural Networks via Ensemble Learning
    Lin, Qi
    Yu, Shuo
    Sun, Ke
    Zhao, Wenhong
    Alfarraj, Osama
    Tolba, Amr
    Xia, Feng
    MATHEMATICS, 2022, 10 (08)
  • [47] Scalable Graph Neural Networks via Bidirectional Propagation
    Chen, Ming
    Wei, Zhewei
    Ding, Bolin
    Li, Yaliang
    Yuan, Ye
    Du, Xiaoyong
    Wen, Ji-Rong
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [48] Reliable Graph Neural Networks via Robust Aggregation
    Geisler, Simon
    Zuegner, Daniel
    Guennemann, Stephan
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [49] Predicting Clinical Events via Graph Neural Networks
    Kanchinadam, Teja
    Gauher, Shaheen
    2022 21ST IEEE INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, ICMLA, 2022, : 1296 - 1303
  • [50] A Twist for Graph Classification: Optimizing Causal Information Flow in Graph Neural Networks
    Zhao, Zhe
    Wang, Pengkun
    Wen, Haibin
    Zhang, Yudong
    Zhou, Zhengyang
    Wang, Yang
    THIRTY-EIGHTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 15, 2024, : 17042 - 17050