Multichannel Anomaly Detection for Spacecraft Time Series Using MAP Estimation

被引:0
|
作者
Li, Tianyu [1 ]
Baireddy, Sriram [1 ]
Comer, Mary [1 ]
Delp, Edward [1 ]
Desai, Sundip R. [2 ]
Foster, Richard H. [2 ]
Chan, Moses W. [2 ]
机构
[1] Purdue Univ, W Lafayette, IN 47907 USA
[2] Lockheed Martin Corp, Adv Technol Ctr, Palo Alto, CA 94304 USA
关键词
Time series analysis; Predictive models; Anomaly detection; Transformers; Space vehicles; Data models; Correlation; anomaly marked point process (Anomaly-MPP); time series; transformer; MARKED POINT PROCESS;
D O I
10.1109/TAES.2024.3400943
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
Automated anomaly detection in spacecraft telemetry systems is essential for analyzing abnormal events and system failures. A widely adopted strategy is to predict the target time sequences using a machine learning method first, then extract the anomalies from the residuals between the target time sequences and the predicted sequences by a thresholding method. Although thresholding-based anomaly extraction is simple and fast, it fails to take advantage of correlations between anomaly sequences over time and across channels. To make the process of anomaly extraction more flexible and more accurate, a statistical model referred as an anomaly marked point process (Anomaly-MPP) is proposed in this article. This model treats anomaly sequences as objects to be detected, making the anomaly detection a classical object detection problem. Formulating this as an optimization problem, we find the maximum a posteriori estimate of the set of anomaly objects in a multichannel time-series dataset, modeling the prediction error sequences generated from the output of a transformer with the proposed Anomaly-MPP for the posterior distribution. The prior distribution can incorporate domain knowledge and user-specified context into the problem formulation, thus providing additional detection "power." By including a length prior energy term and a correlation prior energy term into the model, the anomaly extraction process not only considers the prediction error values, but also takes the length of detected anomaly sequences and the interchannel dependencies into account. A case study is given in the experimental section to illustrate the use of the model on a real dataset. Also, the effectiveness of our method is evaluated on an Mars Reconnaissance Orbiter dataset with inserted known anomalies and two public datasets: Secure Water Treatment and Water Distribution.
引用
收藏
页码:5842 / 5855
页数:14
相关论文
共 50 条
  • [31] Anomaly Detection in Time Series of Graphs using Fusion of Graph Invariants
    Park, Youngser
    Priebe, Carey E.
    Youssef, Abdou
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2013, 7 (01) : 67 - 75
  • [32] An anomaly detection model for multivariate time series with anomaly perception
    Wei, Dong
    Sun, Wu
    Zou, Xiaofeng
    Ma, Dan
    Xu, Huarong
    Chen, Panfeng
    Yang, Chaoshu
    Chen, Mei
    Li, Hui
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [33] ADET: anomaly detection in time series with linear time
    Zhang, Chunkai
    Zuo, Wei
    Yin, Ao
    Wang, Xuan
    Liu, Chuanyi
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2021, 12 (01) : 271 - 280
  • [34] An anomaly detection model for multivariate time series with anomaly perception
    Wei, Dong
    Sun, Wu
    Zou, Xiaofeng
    Ma, Dan
    Xu, Huarong
    Chen, Panfeng
    Yang, Chaoshu
    Chen, Mei
    Li, Hui
    PeerJ Computer Science, 2024, 10
  • [35] ADET: anomaly detection in time series with linear time
    Chunkai Zhang
    Wei Zuo
    Ao Yin
    Xuan Wang
    Chuanyi Liu
    International Journal of Machine Learning and Cybernetics, 2021, 12 : 271 - 280
  • [36] Functional Kernel Density Estimation: Point and Fourier Approaches to Time Series Anomaly Detection
    Lindstrom, Michael R.
    Jung, Hyuntae
    Larocque, Denis
    ENTROPY, 2020, 22 (12) : 1 - 15
  • [37] Real-Time Gait Anomaly Detection Using SVM Time Series Classification
    Rostovski, Jakob
    Krivosei, Andrei
    Kuusik, Alar
    Alam, Muhammad Mahtab
    Ahmadov, Ulvi
    2023 INTERNATIONAL WIRELESS COMMUNICATIONS AND MOBILE COMPUTING, IWCMC, 2023, : 1389 - 1394
  • [38] Anomaly Detection in Time Series: A Comprehensive Evaluation
    Schmidl, Sebastian
    Wenig, Phillip
    Papenbrock, Thorsten
    PROCEEDINGS OF THE VLDB ENDOWMENT, 2022, 15 (09): : 1779 - 1797
  • [39] A SURVEY OF RESEARCH ON ANOMALY DETECTION FOR TIME SERIES
    Wu, Hu-Sheng
    2016 13TH INTERNATIONAL COMPUTER CONFERENCE ON WAVELET ACTIVE MEDIA TECHNOLOGY AND INFORMATION PROCESSING (ICCWAMTIP), 2016, : 426 - 431
  • [40] Unsupervised Anomaly Detection for Seasonal Time Series
    von Werra, Leandro
    Tunstall, Lewis
    Hofer, Simon
    2019 6TH SWISS CONFERENCE ON DATA SCIENCE (SDS), 2019, : 136 - 137