Improving the electrochemical performance of lithium-rich manganese-based cathode materials by Na2S2O8 surface treatment

被引:0
|
作者
Wang, Zeqing [1 ]
Liu, Zhihua [1 ]
Zhang, Ronglan [1 ]
机构
[1] Northwest Univ, Coll Chem & Mat Sci, Key Lab Synthet & Nat Funct Mol, Minist Educ,Xian Key Lab Funct Supramol Struct & M, Xian 710069, Shaanxi, Peoples R China
关键词
Lithium-rich manganese-based cathode material; Surface modification; Pre-activation; Spinel phase;
D O I
10.1016/j.jallcom.2024.176845
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Lithium-rich manganese-based cathode materials are well-regarded for their high specific capacity and notable voltage thresholds, making them attractive for advanced energy storage applications. However, their widespread commercialization is hindered by challenges in cycle performance, including suboptimal initial Coulombic efficiency, inadequate cycle stability, and constrained rate capability. To address these issues, this paper introduces a novel modification strategy using Na(2)S(2)O(8 )to chemically delithiate the surface of the materials. This modification strategy dramatically enhances the initial Coulombic efficiency. The results demonstrate that the initial Coulombic efficiency of the two pre-activated samples improved to 84.6 % and 102.2 %, respectively. At the same time, the Na2S2O8-treated samples exhibit a higher maximum discharge capacity at a 0.2 C rate, reaching 211.1 mAh g(-1) and 201.3 mAh g(-1), which notably surpasses the untreated sample's capacity of 188.7 mAh g(-1). Additionally, the treated samples exhibit improved cycling and rate performance, with capacity retention of 81.2 % and 63.5 %, respectively. After 60 cycles, these figures continue to be superior to those of the untreated material, which stands at 57.3 %. The results demonstrate that Na2S2O8 treatment leads to the in situ formation of spinel phases on the material surface, thereby enhances the cycling stability and rate capability of the cathode material. Compared to traditional surface treatment methods, Na2S2O8 solution treatment can induce more profound structural evolution without necessitating high-temperature calcination, thus reducing the demands on process conditions and equipment and offering greater process controllability. Moreover, this surface modification the for on other substrates with similar structures.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Role of Li2MnO3 Modification in Improving the Electrochemical Performance of Lithium-Rich Manganese-Based Oxide Electrodes
    Li, Yang
    Zhang, Jinlong
    Hong, Ruoyu
    Liu, Ning
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2022, 61 (02) : 1133 - 1139
  • [22] Mitigating chain degradation of lithium-rich manganese-based cathode material by surface engineering
    Cai, Xingpeng
    Li, Shiyou
    Zhou, Junfei
    Zhang, Jiawen
    Zhang, Ningshuang
    Cui, Xiaoling
    ENERGY STORAGE MATERIALS, 2024, 71
  • [23] Thiourea treatment broadens the lattice structure to enhance the electrochemical stability of lithium-rich manganese-based materials
    Zhao, Zhifeng
    Feng, Wangjun
    Su, Wenxiao
    Niu, Yueping
    Hu, Wenting
    Zheng, Xiaoping
    Zhang, Li
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2025, 29 (02) : 571 - 583
  • [24] Boosting Electrochemical Performance of Lithium-Rich Manganese-Based Cathode Materials through a Dual Modification Strategy with Defect Designing and Interface Engineering
    Li, Zhi
    Cao, Shuang
    Xie, Xin
    Wu, Chao
    Li, Heng
    Chang, Baobao
    Chen, Gairong
    Guo, Xiaowei
    Zhang, Xiaoyan
    Wang, Xianyou
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (45) : 53974 - 53985
  • [25] Segmented temperature control strategy for effectively enhancing the rate performance of lithium-rich manganese-based cathode materials
    Zheng, Zihao
    Hui, Teng
    Yu, Hanqi
    Zhang, Yanmin
    Zhang, Lanxin
    Huang, Linze
    Qian, Hua
    Che, Lidong
    Huang, Honghua
    Bei, Fengli
    JOURNAL OF ALLOYS AND COMPOUNDS, 2025, 1020
  • [26] Suppress oxygen evolution of lithium-rich manganese-based cathode materials via an integrated strategy
    Yu, Wenhua
    Wang, Yanyan
    Wu, Aimin
    Li, Aikui
    Qiu, Zhiwen
    Dong, Xufeng
    Dong, Chuang
    Huang, Hao
    GREEN ENERGY & ENVIRONMENT, 2024, 9 (01) : 138 - 151
  • [27] Suppress oxygen evolution of lithium-rich manganese-based cathode materials via an integrated strategy
    Wenhua Yu
    Yanyan Wang
    Aimin Wu
    Aikui Li
    Zhiwen Qiu
    Xufeng Dong
    Chuang Dong
    Hao Huang
    Green Energy & Environment, 2024, 9 (01) : 138 - 151
  • [28] A review of high-capacity lithium-rich manganese-based cathode materials for a new generation of lithium batteries
    Lin, Yi
    Li, You
    Tang, Mulan
    Zhan, Lulu
    Zhai, Yuxin
    Chen, Weiming
    Zhou, Mengxue
    Ji, Yanan
    Wang, Peike
    INORGANICA CHIMICA ACTA, 2024, 572
  • [29] The Enhanced Electrochemical Properties of Lithium-Rich Manganese-Based Cathode Materials via Mg-Al Co-Doping
    Lu, Wanting
    Deng, Wenhui
    Zheng, Xiyan
    Lin, Kunling
    Liu, Mengyuan
    Zhu, Guozhang
    Lin, Jingyi
    Wei, Yi
    Wang, Feng
    Liu, Jiageng
    COATINGS, 2025, 15 (01):
  • [30] Dual Effect of Aluminum Doping and Lithium Tungstate Coating on the Surface Improves the Cycling Stability of Lithium-rich Manganese-based Cathode Materials
    Ren Xuqiang
    Li Donglin
    Zhao Zhenzhen
    Chen Guangqi
    Zhao Kun
    Kong Xiangze
    Li Tongxin
    ACTA CHIMICA SINICA, 2020, 78 (11) : 1268 - 1274