SAMGAT: structure-aware multilevel graph attention networks for automatic rumor detection

被引:0
|
作者
Li, Yafang [1 ]
Chu, Zhihua [1 ]
Jia, Caiyan [2 ]
Zu, Baokai [1 ]
机构
[1] Faculty of lnformation Technology, Beijing University of Technology, Beijing, China
[2] School of Computer and Information Technology & Beijing Key Laboratory of Traffic Data Analysis and Mining, Beijing Jiaotong University, Beijing, China
基金
中国国家自然科学基金;
关键词
Adversarial machine learning - Contrastive Learning - Knowledge graph - Supervised learning;
D O I
10.7717/PEERJ-CS.2200
中图分类号
学科分类号
摘要
The rapid dissemination of unverified information through social platforms like Twitter poses considerable dangers to societal stability. Identifying real versus fake claims is challenging, and previous work on rumor detection methods often fails to effectively capture propagation structure features. These methods also often overlook the presence of comments irrelevant to the discussion topic of the source post. To address this, we introduce a novel approach: the Structure-Aware Multilevel Graph Attention Network (SAMGAT) for rumor classification. SAMGAT employs a dynamic attention mechanism that blends GATv2 and dot-product attention to capture the contextual relationships between posts, allowing for varying attention scores based on the stance of the central node. The model incorporates a structure-aware attention mechanism that learns attention weights that can indicate the existence of edges, effectively reflecting the propagation structure of rumors. Moreover, SAMGAT incorporates a top-k attention filtering mechanism to select the most relevant neighboring nodes, enhancing its ability to focus on the key structural features of rumor propagation. Furthermore, SAMGAT includes a claim-guided attention pooling mechanism with a thresholding step to focus on the most informative posts when constructing the event representation. Experimental results on benchmark datasets demonstrate that SAMGAT outperforms state-of-the-art methods in identifying rumors and improves the effectiveness of early rumor detection. © 2024 Li et al.
引用
收藏
相关论文
共 50 条
  • [31] TGAN: Temporal-Aware Graph Attention Network for Early Rumor Detection in Social Media
    Zhang, Shubo
    Wei, Jing
    Zhao, Zhengyi
    Li, Binyang
    Wong, Kam-Fai
    NATURAL LANGUAGE PROCESSING AND CHINESE COMPUTING, PT IV, NLPCC 2024, 2025, 15362 : 454 - 468
  • [32] Structure-Aware Transformer for Shadow Detection
    Sun, Wanlu
    Xiang, Liyun
    Zhao, Wei
    IET IMAGE PROCESSING, 2025, 19 (01)
  • [33] SA-GCN: structure-aware graph convolutional networks for crowd pose estimation
    Wang, Jia
    Luo, Yanmin
    JOURNAL OF SUPERCOMPUTING, 2023, 79 (09): : 10046 - 10062
  • [34] Structure-Aware Graph Attention Diffusion Network for Protein-Ligand Binding Affinity Prediction
    Li, Mei
    Cao, Ye
    Liu, Xiaoguang
    Ji, Hua
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (12) : 18370 - 18380
  • [35] SA-GCN: structure-aware graph convolutional networks for crowd pose estimation
    Jia Wang
    Yanmin Luo
    The Journal of Supercomputing, 2023, 79 : 10046 - 10062
  • [36] Subgraph Adaptive Structure-Aware Graph Contrastive Learning
    Chen, Zhikui
    Peng, Yin
    Yu, Shuo
    Cao, Chen
    Xia, Feng
    MATHEMATICS, 2022, 10 (17)
  • [37] Hierarchical graph attention networks for multi-modal rumor detection on social media
    Xu, Fan
    Zeng, Lei
    Huang, Qi
    Yan, Keyu
    Wang, Mingwen
    Sheng, Victor S.
    NEUROCOMPUTING, 2024, 569
  • [38] Local structure-aware graph contrastive representation learning
    Yang, Kai
    Liu, Yuan
    Zhao, Zijuan
    Ding, Peijin
    Zhao, Wenqian
    NEURAL NETWORKS, 2024, 172
  • [39] Relation Structure-Aware Heterogeneous Graph Neural Network
    Zhu, Shichao
    Zhou, Chuan
    Pan, Shirui
    Zhu, Xingquan
    Wang, Bin
    2019 19TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2019), 2019, : 1534 - 1539
  • [40] Multi-Graph Learning Based on Structure-Aware
    Fu, Dong-Lai
    Gao, Ze-An
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2024, 52 (07): : 2407 - 2417