Cross-Attention-Driven Adaptive Graph Relational Network for Multilabel Remote Sensing Scene Classification

被引:0
|
作者
Bi, Haixia [1 ]
Chang, Honghao [1 ]
Wang, Xiaotian [2 ]
Hong, Danfeng [3 ,4 ]
机构
[1] Xi An Jiao Tong Univ, Sch Informat & Commun Engn, Xian 710049, Peoples R China
[2] Northwestern Polytech Univ, Unmanned Syst Res Inst, Xian 710072, Peoples R China
[3] Chinese Acad Sci, Aerosp Informat Res Inst, Beijing 100094, Peoples R China
[4] Univ Chinese Acad Sci, Sch Elect Elect & Commun Engn, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Remote sensing; Semantics; Feature extraction; Correlation; Scene classification; Long short term memory; Support vector machines; Adaptation models; Visualization; Solid modeling; Cross-attention; graph convolutional networks (GCNs); label dependency; multilabel classification; remote sensing; DEEP LEARNING APPROACH; IMAGE;
D O I
10.1109/TGRS.2024.3476089
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Multilabel remote sensing scene classification (MLRSSC) has garnered growing attention in recent years, owing to its more comprehensive description of land covers compared to its single-label counterpart. However, challenges arise inevitably. First, the relations among multiple scene labels are sophisticated. How to excavate the interclass dependencies is, therefore, a key challenge for the MLRSSC task. Second, extracting discriminative semantic features is essential, yet challenging for scene prediction of remote sensing images. Another issue is that the multilabel dataset usually shows twofold sample imbalances, that is, class imbalance and positive-negative imbalance, which have not been explored in MLRSSC tasks so far. To overcome the above hurdles, we put forward a cross-attention-driven adaptive graph relational network for the MLRSSC task. Different from the chain-like long short-term memory (LSTM) or static label co-occurrence matrices, we propose to use image-specific relational graphs to dynamically model the interclass dependencies. We innovatively devise a cross-attention-driven representation learning approach, which uses learnable label embeddings to query the class-wise semantic features, explicitly establishing the feature-label connections. Moreover, we design a balanced focal loss (BFL) function, where the loss contributions of positive and negative samples are rebalanced based on the respective imbalance degrees of diverse classes. Extensive experiments were performed on UCM, AID, and DFC15 multilabel datasets. Experimental results demonstrated that our proposed method achieves state-of-the-art performance in the studied task.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] A Cross-Layer Nonlocal Network for Remote Sensing Scene Classification
    Li, Ming
    Lei, Lin
    Sun, Yuli
    Li, Xiao
    Kuang, Gangyao
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [22] A Hierarchical Graph-Enhanced Transformer Network for Remote Sensing Scene Classification
    Li, Ziwei
    Xu, Weiming
    Yang, Shiyu
    Wang, Juan
    Su, Hua
    Huang, Zhanchao
    Wu, Sheng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 20315 - 20330
  • [23] SAGN: Semantic-Aware Graph Network for Remote Sensing Scene Classification
    Yang, Yuqun
    Tang, Xu
    Cheung, Yiu-Ming
    Zhang, Xiangrong
    Jiao, Licheng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2023, 32 : 1011 - 1025
  • [24] A Cross-Layer Nonlocal Network for Remote Sensing Scene Classification
    Li, Ming
    Lei, Lin
    Sun, Yuli
    Li, Xiao
    Kuang, Gangyao
    IEEE Geoscience and Remote Sensing Letters, 2022, 19
  • [25] Contextual Spatial-Channel Attention Network for Remote Sensing Scene Classification
    Hou, Yan-e
    Yang, Kang
    Dang, Lanxue
    Liu, Yang
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [26] Improved Attention Mechanism and Residual Network for Remote Sensing Image Scene Classification
    Kong, Jiayuan
    Gao, Yurong
    Zhang, Yanjun
    Lei, Huimin
    Wang, Yao
    Zhang, Hesheng
    IEEE ACCESS, 2021, 9 : 134800 - 134808
  • [27] A lightweight and stochastic depth residual attention network for remote sensing scene classification
    Wang, Xinyu
    Xu, Haixia
    Yuan, Liming
    Wen, Xianbin
    IET IMAGE PROCESSING, 2023, 17 (11) : 3106 - 3126
  • [28] An Attention Cascade Global-Local Network for Remote Sensing Scene Classification
    Shen, Junge
    Yu, Tianwei
    Yang, Haopeng
    Wang, Ruxin
    Wang, Qi
    REMOTE SENSING, 2022, 14 (09)
  • [29] Multilabel Aerial Image Classification With a Concept Attention Graph Neural Network
    Lin, Dan
    Lin, Jianzhe
    Zhao, Liang
    Wang, Z. Jane
    Chen, Zhikui
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [30] Attention-Driven Graph Convolution Network for Remote Sensing Image Retrieval
    Chaudhuri, Ushasi
    Banerjee, Biplab
    Bhattacharya, Avik
    Datcu, Mihai
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19