Optimal polynomial feedback laws for finite horizon control problems

被引:0
|
作者
Kunisch, Karl [1 ,2 ]
Vásquez-Varas, Donato [1 ]
机构
[1] Radon Institute for Computational and Applied Mathematics, Austrian Academy of Sciences, Altenbergerstraße 69, Linz,A-4040, Austria
[2] Institute of Mathematics and Scientific Computing, University of Graz, Heinrichstraße 36, Graz,A-8010, Austria
来源
arXiv | 2023年
关键词
Compendex;
D O I
暂无
中图分类号
学科分类号
摘要
Dynamic programming
引用
收藏
相关论文
共 50 条
  • [21] Adaptive dynamic programming for terminally constrained finite-horizon optimal control problems
    Andrews, L.
    Klotz, J. R.
    Kamalapurkar, R.
    Dixon, W. E.
    2014 IEEE 53RD ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2014, : 5095 - 5100
  • [22] Algebraic Approach to Nonlinear Finite-Horizon Optimal Control Problems with Terminal Constraints
    Iori, Tomoyuki
    Kawano, Yu
    Ohtsuka, Toshiyuki
    2017 11TH ASIAN CONTROL CONFERENCE (ASCC), 2017, : 1 - 6
  • [23] Robust output feedback finite-horizon optimal control for landing unmanned quadrotors on a slope
    Wang, Hao
    Lu, Geng
    Shi, Zongying
    Zhong, Yisheng
    2017 AMERICAN CONTROL CONFERENCE (ACC), 2017, : 4285 - 4290
  • [24] Optimal solutions to the infinite horizon problems: Constructing the optimum as the limit of the solutions for the finite horizon problems
    Cai, Dapeng
    Nitta, Takashi Gyoshin
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) : E2103 - E2108
  • [25] PROBLEMS OF OPTIMAL INFINITE-HORIZON CONTROL
    PIUNOVSKIY, AB
    SOVIET JOURNAL OF COMPUTER AND SYSTEMS SCIENCES, 1990, 28 (06): : 65 - 71
  • [26] On infinite-horizon optimal control problems
    Effati, S
    Kamyad, V
    Kamyabi-Gol, RA
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2000, 19 (01): : 269 - 278
  • [27] NUMERICAL STUDY OF POLYNOMIAL FEEDBACK LAWS FOR A BILINEAR CONTROL PROBLEM
    Breiten, Tobias
    Kunisch, Karl
    Pfeiffer, Laurent
    MATHEMATICAL CONTROL AND RELATED FIELDS, 2018, 8 (3-4) : 557 - 582
  • [28] Finite-horizon optimal control of Boolean control networks
    Fornasini, Ettore
    Valcher, Maria Elena
    2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 3864 - 3869
  • [29] Consistent smooth approximation of feedback laws for infinite horizon control problems with non-smooth value functions
    Kunisch, Karl
    Vasquez-Varas, Donato
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2024, 411 : 438 - 477
  • [30] PURSUIT AND FEEDBACK IN OPTIMAL STOCHASTIC CONTROL - EXPLICIT CONTROL LAWS
    WERNERSS.A
    INFORMATION SCIENCES, 1974, 7 (01) : 29 - 48