3D printed polylactic acid/polyethylene glycol/bredigite nanocomposite scaffold enhances bone tissue regeneration via promoting osteogenesis and angiogenesis

被引:4
|
作者
Salehi, Saiedeh [1 ]
Ghomi, Hamed [1 ]
Hassanzadeh-Tabrizi, S. A. [1 ]
Koupaei, Narjes [1 ]
Khodaei, Mohammad [2 ]
机构
[1] Islamic Azad Univ, Adv Mat Res Ctr, Dept Mat Engn, Najafabad Branch, Najafabad, Iran
[2] Isfahan Univ Technol, Golpayegan Coll Engn, Mat Engn Grp, Golpayegan 8771767498, Iran
关键词
Three-dimensional printing; Bone tissue engineering; Polylactic acid; Polyethylene glycol; Bredigite; Scaffold; CALCIUM SILICATE CERAMICS; SURFACE; IONS; FABRICATION; GLYCOL; DRUG;
D O I
10.1016/j.ijbiomac.2024.136160
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recently, the fabrication of personalized scaffolds with high accuracy has been developed through 3D printing technology. In the current study, polylactic acid/polyethylene glycol (PLA/PEG) composite scaffolds with varied weight percentages (0, 5, 10, 20 and 30 %) of bredigite nanoparticles (B) were fabricated using the 3D printing and then characterized through scanning electron microscopy and Fourier transform infra-red spectroscopy. The addition of B nanoparticles up to 20 wt% to PLA/PEG scaffold increased the compressive strength (from 7.59 to 13.84 MPa) and elastic modulus (from 142.42 to 268.33 MPa). The apatite formation ability as well as inorganic ion release in simulated body fluid were investigated for 28 days. The MG-63 cells viability and adhesion were enhanced by increasing the amount of B in the PLA/PEG scaffold and the osteogenic differentiation of the rat bone marrow mesenchymal stem cells was confirmed by alkaline phosphatase activity test and alizarin red staining. According to chorioallantoic membrane assay, the highest angiogenesis occurred around the PLA/PEG/ B30 scaffold. In vivo experiments on a rat calvarial defect model demonstrated an almost complete recovery in the PLA/PEG/B30 group within 8 weeks. Based on the results, the PLA/PEG/B30 composite scaffold is proposed as an optimal scaffold to repair bone defects.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] 3D-printed injectable nanocomposite cryogel scaffolds for bone tissue regeneration
    Castanheira, Edgar J.
    Maia, Joao R.
    Monteiro, Luis P. G.
    Sobreiro-Almeida, Rita
    Wittig, Nina K.
    Birkedal, Henrik
    Rodrigues, Joao M. M.
    Mano, Joao F.
    MATERIALS TODAY NANO, 2024, 28
  • [42] Bone tissue engineering potentials of 3D printed magnesium-hydroxyapatite in polylactic acid composite scaffolds
    Lett, Jayasingh Anita
    Sagadevan, Suresh
    Leonard, Estelle
    Fatimah, Is
    Hossain, M. A. Motalib
    Mohammad, Faruq
    Al-Lohedan, Hamad A.
    Paiman, Suriati
    Alshahateet, Solhe F.
    Abd Razak, Saiful Izwan
    Johan, Mohd Rafie
    ARTIFICIAL ORGANS, 2021, 45 (12) : 1501 - 1512
  • [43] 3D printed Polylactid Acid based porous scaffold for bone tissue engineering: an in vitro study
    Bodnarova, Simona
    Gromosova, Sylvia
    Hudak, Radovan
    Rosocha, Jan
    Zivcak, Jozef
    Plsikova, Jana
    Vojtko, Marek
    Toth, Teodor
    Harvanova, Denisa
    Izarikova, Gabriela
    Danisovic, L'ubos
    ACTA OF BIOENGINEERING AND BIOMECHANICS, 2019, 21 (04) : 101 - 110
  • [44] 3D Printing of Polylactic Acid Microspheres in Polycaprolactone Scaffolds for Tissue Regeneration
    Gruber, S. M.
    Ghosh, P.
    Whitlock, P.
    Lin, C. J.
    TISSUE ENGINEERING PART A, 2016, 22 : S44 - S44
  • [45] Development of a Scaffold-on-a-Chip Platform to Evaluate Cell Infiltration and Osteogenesis on the 3D-Printed Scaffold for Bone Regeneration
    Han, Jinsub
    Park, Sangbae
    Kim, Jae Eun
    Park, Byeongjoo
    Hong, Yeonggeol
    Lim, Jae Woon
    Jeong, Seung
    Son, Hyunmok
    Kim, Hong Bae
    Seonwoo, Hoon
    Jang, Kyoung-Je
    Chung, Jong Hoon
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2023, 9 (02) : 968 - 977
  • [46] Enhancing Osteogenesis and Mechanical Properties through Scaffold Design in 3D Printed Bone Substitutes
    Cao, Xinyi
    Sun, Kexin
    Luo, Junyue
    Chen, Andi
    Wan, Qi
    Zhou, Hongyi
    Zhou, Hongbo
    Liu, Yuehua
    Chen, Xiaojing
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2025, 11 (02): : 710 - 729
  • [47] Development of a Scaffold-on-a-Chip Platform to Evaluate Cell Infiltration and Osteogenesis on the 3D-Printed Scaffold for Bone Regeneration
    Han, Jinsub
    Park, Sangbae
    Kim, Jae Eun
    Park, Byeongjoo
    Hong, Yeonggeol
    Lim, Jae Woon
    Jeong, Seung
    Son, Hyunmok
    Kim, Hong Bae
    Seonwoo, Hoon
    Jang, Kyoung-Je
    Chung, Jong Hoon
    ACS BIOMATERIALS SCIENCE & ENGINEERING, 2023,
  • [48] Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration
    Wang, Mian
    Favi, Pelagie
    Cheng, Xiaoqian
    Golshan, Negar H.
    Ziemer, Katherine S.
    Keidar, Michael
    Webster, Thomas J.
    ACTA BIOMATERIALIA, 2016, 46 : 256 - 265
  • [49] Integrating cold atmospheric plasma with 3D printed bioactive nanocomposite scaffold for cartilage regeneration
    Lee, Se-jun
    Yan, Dayun
    Zhou, Xuan
    Cui, Haitao
    Esworthy, Timothy
    Hann, Sung Yun
    Keidar, Michael
    Zhang, Lijie Grace
    MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2020, 111
  • [50] 3D printed polylactic acid-based nanocomposite scaffold stuffed with microporous simvastatin-loaded polyelectrolyte for craniofacial reconstruction
    Tavakoli, Mohamadreza
    Salehi, Hossein
    Emadi, Rahmatollah
    Varshosaz, Jaleh
    Labbaf, Sheyda
    Seifalian, Alexander Marcus
    Sharifianjazi, Fariborz
    Mirhaj, Marjan
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 258