Sustainable reinforced concrete design: The role of ultra-high performance concrete (UHPC) in life-cycle structural performance and environmental impacts

被引:6
|
作者
Fan J. [1 ,2 ]
Shao Y. [3 ,4 ]
Bandelt M.J. [2 ]
Adams M.P. [2 ]
Ostertag C.P. [4 ]
机构
[1] Department of Civil and Environmental Engineering, University of California, Davis, CA
[2] John A. Reif, Jr., Department of Civil and Environmental Engineering, New Jersey Institute of Technology, Newark, NJ
[3] Department of Civil Engineering, McGill University, Montreal, QC
[4] Civil and Environmental Engineering, University of California, Berkeley, CA
关键词
Composite; Corrosion; Green house gas; Life cycle analysis; Sustainability; UHPC;
D O I
10.1016/j.engstruct.2024.118585
中图分类号
学科分类号
摘要
Ultra-high performance concrete (UHPC), an advanced type of concrete material that shows superior mechanical and durability performance, brings promises of reducing the material usage and increasing the life span of conventional concrete structures. However, the environmental benefits of adopting UHPC have not been well understood because of a lack of life-cycle comparison between UHPC and conventional concrete structures. To address this gap, a structural, corrosion, and carbon emissions analysis of UHPC and concrete beams of similar functions (i.e., strength and stiffness) was completed. In addition to adopting UHPC in the full section, a new composite beam concept was also proposed to have UHPC in the compression zone only. Based on finite element (FE) analysis, UHPC beams were designed to show similar stiffness and strength as the concrete beams while the cross-section areas were greatly reduced. Service life spans were then determined through a time-dependent multi-physics modeling framework. Subsequently, analysis regarding the material costs, initial and life-cycle carbon emission was done. The simulation results show that the composite beam can significantly reduce cross-sectional area and self-weight with less than 13% increase in material costs. The carbon emissions of the composite beam was over 25% lower than that of the concrete beam, both in the initial and life-cycle range. Additionally, full UHPC beams could show similar initial carbon emission and around 48% lower life-cycle carbon emissions compared to the concrete beams. © 2024 The Author(s)
引用
收藏
相关论文
共 50 条
  • [21] Stress-strain models for ultra-high performance concrete (UHPC) and ultra-high performance fiber-reinforced concrete (UHPFRC) under triaxial compression
    Zhang, S. S.
    Wang, J. J.
    Lin, Guan
    Yu, T.
    Fernando, D.
    CONSTRUCTION AND BUILDING MATERIALS, 2023, 370
  • [22] Enhancement of local concrete compression performance by incorporating ultra-high performance concrete (UHPC) tube
    Wang, Lifeng
    Wu, Haiqi
    Liu, Long
    Xiao, Ziwang
    MULTIDISCIPLINE MODELING IN MATERIALS AND STRUCTURES, 2022, 18 (05) : 856 - 878
  • [23] Material design of economical ultra-high performance concrete (UHPC) and evaluation of their properties
    Arora, Aashay
    Almujaddidi, Asim
    Kianmofrad, Farrokh
    Mobasher, Barzin
    Neithalath, Narayanan
    CEMENT & CONCRETE COMPOSITES, 2019, 104
  • [24] Uncovering the role of micro silica in hydration of ultra-high performance concrete (UHPC)
    Lee, Nam Kon
    Koh, K. T.
    Kim, Min Ook
    Ryu, G. S.
    CEMENT AND CONCRETE RESEARCH, 2018, 104 : 68 - 79
  • [25] Optimized design of ultra-high performance concrete (UHPC) with a high wet packing density
    Wang, Xinpeng
    Yu, Rui
    Song, Qiulei
    Shui, Zhonghe
    Liu, Zhen
    Wu, Shuo
    Hou, Dongshuai
    CEMENT AND CONCRETE RESEARCH, 2019, 126
  • [26] Advances in the mechanical properties of ultra-high performance concrete (UHPC)
    Chen, JianKang
    SCIENTIA SINICA-PHYSICA MECHANICA & ASTRONOMICA, 2024, 54 (05)
  • [27] Axial compressive behaviors of reinforced concrete composite column with precast ultra-high performance concrete (UHPC) jacket
    Zhang, Xiaochen
    Wu, Xiangguo
    Zhang, Dong
    Huang, Qingwei
    Chen, Baochun
    JOURNAL OF BUILDING ENGINEERING, 2022, 48
  • [28] Development of a sustainable alkali activated ultra-high performance concrete (A-UHPC) incorporating recycled concrete fines
    Zhang, X. Y.
    Fan, M. X.
    Zhou, Y. X.
    Ji, D. D.
    Li, J. H.
    Yu, R.
    JOURNAL OF BUILDING ENGINEERING, 2023, 67
  • [29] Life-cycle evaluation of deteriorated structural performance of neutralised reinforced concrete bridges
    Sung, Yu-Chi
    Huang, Chao-Hsun
    Liu, Kuang-Yen
    Wang, Chuan-Huei
    Su, Chin-Kuo
    Chang, Kuo-Chun
    STRUCTURE AND INFRASTRUCTURE ENGINEERING, 2010, 6 (06) : 741 - 751
  • [30] Comparative environmental and social life cycle assessments of off-shore aquaculture rafts made in ultra-high performance concrete (UHPC)
    Caruso, Maria Chiara
    Pascale, Carmine
    Camacho, Esteban
    Ferrara, Liberato
    INTERNATIONAL JOURNAL OF LIFE CYCLE ASSESSMENT, 2022, 27 (02): : 281 - 300