Greenhouse gas emission estimation from municipal wastewater using a hybrid approach of generative adversarial network and data-driven modelling

被引:0
|
作者
Asadi, Mohsen [1 ]
McPhedran, Kerry Neil [1 ]
机构
[1] Asadi, Mohsen
[2] McPhedran, Kerry Neil
来源
McPhedran, Kerry Neil (Kerry.mcphedran@usask.ca) | 1600年 / Elsevier B.V.卷 / 800期
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 50 条
  • [21] A hybrid data-driven and mechanistic modelling approach for hydrothermal gasification
    Li, Jie
    Suvarna, Manu
    Pan, Lanjia
    Zhao, Yingru
    Wang, Xiaonan
    APPLIED ENERGY, 2021, 304 (304)
  • [22] Biogas maximization using data-driven modelling with uncertainty analysis and genetic algorithm for municipal wastewater anaerobic digestion
    Asadi, Mohsen
    McPhedran, Kerry
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2021, 293 (293)
  • [23] A Data-Driven Based Response Reconstruction Method of Plate Structure with Conditional Generative Adversarial Network
    Zhang, He
    Xu, Chengkan
    Jiang, Jiqing
    Shu, Jiangpeng
    Sun, Liangfeng
    Zhang, Zhicheng
    SENSORS, 2023, 23 (15)
  • [24] Implementing generative adversarial network (GAN) as a data-driven multi-site stochastic weather generator for flood frequency estimation
    Ji, Hong Kang
    Mirzaei, Majid
    Lai, Sai Hin
    Dehghani, Adnan
    Dehghani, Amin
    ENVIRONMENTAL MODELLING & SOFTWARE, 2024, 172
  • [25] A New Plant Wide Modelling Approach for the Reduction of Greenhouse Gas Emission from Wastewater Treatment Plants
    Caniani, D.
    Cosenza, A.
    Esposito, G.
    Frunzo, L.
    Gori, R.
    Bellandi, G.
    Caivano, M.
    Mannina, G.
    FRONTIERS IN WASTEWATER TREATMENT AND MODELLING, FICWTM 2017, 2017, 4 : 489 - 496
  • [26] Estimation of greenhouse gas emissions from a hybrid wastewater treatment plant
    Kyung, Daeseung
    Kim, Minsun
    Chang, Jin
    Lee, Woojin
    JOURNAL OF CLEANER PRODUCTION, 2015, 95 : 117 - 123
  • [27] Data Enhancement for Data-Driven Modeling in Power Plants Based on a Conditional Variational-Adversarial Generative Network
    Wang, Peng
    Si, Fengqi
    Fan, Wei
    Shao, Zhuang
    Ren, Shaojun
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2021, 60 (24) : 8829 - 8843
  • [28] Data-Driven Predictive Scheduling in Ultra-Reliable Low-Latency Industrial IoT: A Generative Adversarial Network Approach
    Liu, Chen-Feng
    Bennis, Mehdi
    PROCEEDINGS OF THE 21ST IEEE INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING ADVANCES IN WIRELESS COMMUNICATIONS (IEEE SPAWC2020), 2020,
  • [29] Data -driven modelling of nonlinear spatio-temporal fluid flows using a deep convolutional generative adversarial network
    Cheng, M.
    Fang, F.
    Pain, C. C.
    Navon, I. M.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2020, 365
  • [30] Predictive Data-Driven Model Based on Generative Adversarial Network for Premixed Turbulence-Combustion Regimes
    Grenga, T.
    Nista, L.
    Schumann, C.
    Karimi, A. N.
    Scialabba, G.
    Attili, A.
    Pitsch, H.
    COMBUSTION SCIENCE AND TECHNOLOGY, 2023, 195 (15) : 3923 - 3946